Marco Fiore, N. D. Modugno, Francesco Pellegrini, Mariagrazia Roselli
{"title":"食品处理用固态微波处理机","authors":"Marco Fiore, N. D. Modugno, Francesco Pellegrini, Mariagrazia Roselli","doi":"10.4995/ampere2019.2019.9862","DOIUrl":null,"url":null,"abstract":"Uneven heating and hot spots, irregular matching conditions and deterioration of organoleptic qualities are typical drawbacks of magnetron-based food processing with microwave radiation. The proposed “Kopernicook” modular architecture, based on multiple solid-state generators governed by a distributed software platform, allows highly accurate parametric control, full customization of radiation patterns and dynamic self-regulating workflows. The first results, validated with industrial applications, show great flexibility of operation, optimal energy consumption and different ideas for future developments in terms of radiation patterns and feedback-triggered algorithms aimed at maximally efficient processes.","PeriodicalId":277158,"journal":{"name":"Proceedings 17th International Conference on Microwave and High Frequency Heating","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SOLID-STATE MICROWAVE PROCESSOR FOR FOOD TREATMENT\",\"authors\":\"Marco Fiore, N. D. Modugno, Francesco Pellegrini, Mariagrazia Roselli\",\"doi\":\"10.4995/ampere2019.2019.9862\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Uneven heating and hot spots, irregular matching conditions and deterioration of organoleptic qualities are typical drawbacks of magnetron-based food processing with microwave radiation. The proposed “Kopernicook” modular architecture, based on multiple solid-state generators governed by a distributed software platform, allows highly accurate parametric control, full customization of radiation patterns and dynamic self-regulating workflows. The first results, validated with industrial applications, show great flexibility of operation, optimal energy consumption and different ideas for future developments in terms of radiation patterns and feedback-triggered algorithms aimed at maximally efficient processes.\",\"PeriodicalId\":277158,\"journal\":{\"name\":\"Proceedings 17th International Conference on Microwave and High Frequency Heating\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings 17th International Conference on Microwave and High Frequency Heating\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4995/ampere2019.2019.9862\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 17th International Conference on Microwave and High Frequency Heating","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4995/ampere2019.2019.9862","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
SOLID-STATE MICROWAVE PROCESSOR FOR FOOD TREATMENT
Uneven heating and hot spots, irregular matching conditions and deterioration of organoleptic qualities are typical drawbacks of magnetron-based food processing with microwave radiation. The proposed “Kopernicook” modular architecture, based on multiple solid-state generators governed by a distributed software platform, allows highly accurate parametric control, full customization of radiation patterns and dynamic self-regulating workflows. The first results, validated with industrial applications, show great flexibility of operation, optimal energy consumption and different ideas for future developments in terms of radiation patterns and feedback-triggered algorithms aimed at maximally efficient processes.