{"title":"推荐系统中的过滤技术综述","authors":"S. Shargunam, G. Rajakumar","doi":"10.51983/ajsat-2021.10.2.3059","DOIUrl":null,"url":null,"abstract":"Recommendation systems are not new to the world, they have rapidly become prevalent, appearing in almost every type of technology on a daily basis. As a result, recommendation systems were necessary to reduce the amount of time spent looking for the best and most essential items. Information filtering, user personalization, collaborative filtering, and hybrid filtering are just some of the ways used by recommendation systems in diversion, streaming, software, and other areas to present users and customers with customized content and products. The various filtering methods are compared and analyzed in order to improve the accuracy and quality of the recommendation system.","PeriodicalId":414891,"journal":{"name":"Asian Journal of Science and Applied Technology","volume":"181 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Filtering Techniques in Recommendation Systems: A Review\",\"authors\":\"S. Shargunam, G. Rajakumar\",\"doi\":\"10.51983/ajsat-2021.10.2.3059\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recommendation systems are not new to the world, they have rapidly become prevalent, appearing in almost every type of technology on a daily basis. As a result, recommendation systems were necessary to reduce the amount of time spent looking for the best and most essential items. Information filtering, user personalization, collaborative filtering, and hybrid filtering are just some of the ways used by recommendation systems in diversion, streaming, software, and other areas to present users and customers with customized content and products. The various filtering methods are compared and analyzed in order to improve the accuracy and quality of the recommendation system.\",\"PeriodicalId\":414891,\"journal\":{\"name\":\"Asian Journal of Science and Applied Technology\",\"volume\":\"181 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asian Journal of Science and Applied Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.51983/ajsat-2021.10.2.3059\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Journal of Science and Applied Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.51983/ajsat-2021.10.2.3059","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Filtering Techniques in Recommendation Systems: A Review
Recommendation systems are not new to the world, they have rapidly become prevalent, appearing in almost every type of technology on a daily basis. As a result, recommendation systems were necessary to reduce the amount of time spent looking for the best and most essential items. Information filtering, user personalization, collaborative filtering, and hybrid filtering are just some of the ways used by recommendation systems in diversion, streaming, software, and other areas to present users and customers with customized content and products. The various filtering methods are compared and analyzed in order to improve the accuracy and quality of the recommendation system.