一种基于不同proony方法的暂态和稳态功率特征提取

H. C. Ancelmo, F. L. Grando, B. M. Mulinari, Clayton H. da Costa, A. Lazzaretti, E. Oroski, D. Renaux, Fabiana Pottker, C. Lima, R. Linhares
{"title":"一种基于不同proony方法的暂态和稳态功率特征提取","authors":"H. C. Ancelmo, F. L. Grando, B. M. Mulinari, Clayton H. da Costa, A. Lazzaretti, E. Oroski, D. Renaux, Fabiana Pottker, C. Lima, R. Linhares","doi":"10.1109/ISAP48318.2019.9065959","DOIUrl":null,"url":null,"abstract":"The extraction of features that defines the electric power signature of a load or an appliance is one of the most relevant stages for the Non-Intrusive Load Monitoring (NILM) problem. In general, harmonic content, damping and transient switching features are normally used to classify different loads connected or disconnected in a consumer unit. In this sense, this work compares five different approaches of the Prony's method (Polynomial, Least Squares, Total Least Squares, Matrix Pencil, and IIR-based) with the aim of simplifying the order of the model and provide an analytic solution to the problem of estimating the harmonic content (frequency, phase, and amplitude) with the exponential damping factor for current signals. Using the components from Prony's method as steady-state and transient features, an Ensemble classifier is used to perform the classification of the different waveforms of two publicly available databases (COOLL and LIT). With that, we show that the proposed method achieves 98% for the COOLL dataset and 97% for the LIT database, using the Matrix Pencil approach.","PeriodicalId":316020,"journal":{"name":"2019 20th International Conference on Intelligent System Application to Power Systems (ISAP)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A Transient and Steady-State Power Signature Feature Extraction Using Different Prony's Methods\",\"authors\":\"H. C. Ancelmo, F. L. Grando, B. M. Mulinari, Clayton H. da Costa, A. Lazzaretti, E. Oroski, D. Renaux, Fabiana Pottker, C. Lima, R. Linhares\",\"doi\":\"10.1109/ISAP48318.2019.9065959\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The extraction of features that defines the electric power signature of a load or an appliance is one of the most relevant stages for the Non-Intrusive Load Monitoring (NILM) problem. In general, harmonic content, damping and transient switching features are normally used to classify different loads connected or disconnected in a consumer unit. In this sense, this work compares five different approaches of the Prony's method (Polynomial, Least Squares, Total Least Squares, Matrix Pencil, and IIR-based) with the aim of simplifying the order of the model and provide an analytic solution to the problem of estimating the harmonic content (frequency, phase, and amplitude) with the exponential damping factor for current signals. Using the components from Prony's method as steady-state and transient features, an Ensemble classifier is used to perform the classification of the different waveforms of two publicly available databases (COOLL and LIT). With that, we show that the proposed method achieves 98% for the COOLL dataset and 97% for the LIT database, using the Matrix Pencil approach.\",\"PeriodicalId\":316020,\"journal\":{\"name\":\"2019 20th International Conference on Intelligent System Application to Power Systems (ISAP)\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 20th International Conference on Intelligent System Application to Power Systems (ISAP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISAP48318.2019.9065959\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 20th International Conference on Intelligent System Application to Power Systems (ISAP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISAP48318.2019.9065959","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

对于非侵入式负载监测(NILM)问题来说,特征的提取定义了负载或设备的电力特征是最相关的阶段之一。一般来说,谐波含量、阻尼和瞬态开关特性通常用于对用户单元中连接或断开的不同负载进行分类。从这个意义上说,这项工作比较了五种不同的proony方法(多项式、最小二乘、总最小二乘、矩阵铅笔和基于iir的方法),目的是简化模型的顺序,并为用指数阻尼因子估计电流信号的谐波含量(频率、相位和幅度)的问题提供解析解决方案。使用来自proony方法的组件作为稳态和瞬态特征,使用集成分类器对两个公开可用数据库(COOLL和LIT)的不同波形进行分类。由此,我们表明,使用矩阵铅笔方法,所提出的方法在COOLL数据集上达到98%,在LIT数据库上达到97%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Transient and Steady-State Power Signature Feature Extraction Using Different Prony's Methods
The extraction of features that defines the electric power signature of a load or an appliance is one of the most relevant stages for the Non-Intrusive Load Monitoring (NILM) problem. In general, harmonic content, damping and transient switching features are normally used to classify different loads connected or disconnected in a consumer unit. In this sense, this work compares five different approaches of the Prony's method (Polynomial, Least Squares, Total Least Squares, Matrix Pencil, and IIR-based) with the aim of simplifying the order of the model and provide an analytic solution to the problem of estimating the harmonic content (frequency, phase, and amplitude) with the exponential damping factor for current signals. Using the components from Prony's method as steady-state and transient features, an Ensemble classifier is used to perform the classification of the different waveforms of two publicly available databases (COOLL and LIT). With that, we show that the proposed method achieves 98% for the COOLL dataset and 97% for the LIT database, using the Matrix Pencil approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Optimal allocation of multi-type distributed generators for minimization of power losses in distribution systems Forecasting Power Consumption of IT Devices in a Data Center A Framework for Cyber-Physical Model Creation and Evaluation Predictive Maintenance of Air Conditioning Systems Using Supervised Machine Learning Boost Power Factor Correction Converter fed Domestic Induction Heating System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1