建立一个基于印度尼西亚规则的词性标注器

Rashel Fam, A. Luthfi, A. Dinakaramani, R. Manurung
{"title":"建立一个基于印度尼西亚规则的词性标注器","authors":"Rashel Fam, A. Luthfi, A. Dinakaramani, R. Manurung","doi":"10.1109/IALP.2014.6973521","DOIUrl":null,"url":null,"abstract":"This paper describes work on a part-of-speech tagger for the Indonesian language by employing a rule-based approach. The system tokenizes documents while also considering multi-word expressions and recognizes named entities. It then applies tags to every token, starting from closed-class words to open-class words and disambiguates the tags based on a set of manually defined rules. The system currently obtains an accuracy of 79% on a manually tagged corpus of roughly 250.000 tokens.","PeriodicalId":117334,"journal":{"name":"2014 International Conference on Asian Language Processing (IALP)","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"44","resultStr":"{\"title\":\"Building an Indonesian rule-based part-of-speech tagger\",\"authors\":\"Rashel Fam, A. Luthfi, A. Dinakaramani, R. Manurung\",\"doi\":\"10.1109/IALP.2014.6973521\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes work on a part-of-speech tagger for the Indonesian language by employing a rule-based approach. The system tokenizes documents while also considering multi-word expressions and recognizes named entities. It then applies tags to every token, starting from closed-class words to open-class words and disambiguates the tags based on a set of manually defined rules. The system currently obtains an accuracy of 79% on a manually tagged corpus of roughly 250.000 tokens.\",\"PeriodicalId\":117334,\"journal\":{\"name\":\"2014 International Conference on Asian Language Processing (IALP)\",\"volume\":\"56 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"44\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 International Conference on Asian Language Processing (IALP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IALP.2014.6973521\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Asian Language Processing (IALP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IALP.2014.6973521","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 44

摘要

本文介绍了采用基于规则的方法对印尼语词性标注器的工作。系统对文档进行标记,同时还考虑多词表达式并识别命名实体。然后,它将标记应用于每个令牌,从封闭类单词到开放类单词,并根据一组手动定义的规则消除标记的歧义。该系统目前在大约25万个标记的人工标记语料库上获得了79%的准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Building an Indonesian rule-based part-of-speech tagger
This paper describes work on a part-of-speech tagger for the Indonesian language by employing a rule-based approach. The system tokenizes documents while also considering multi-word expressions and recognizes named entities. It then applies tags to every token, starting from closed-class words to open-class words and disambiguates the tags based on a set of manually defined rules. The system currently obtains an accuracy of 79% on a manually tagged corpus of roughly 250.000 tokens.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Automatic detection of subject/object drops in Bengali Which performs better for new word detection, character based or Chinese Word Segmentation based? Effectiveness of multiscale fractal dimension-based phonetic segmentation in speech synthesis for low resource language A Cepstral Mean Subtraction based features for Singer Identification The analysis on mistaken segmentation of Tibetan words based on statistical method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1