基于国家依赖自回归模型对美国GDP增长率预测的评估。不同方法的比较

F. Gobbi
{"title":"基于国家依赖自回归模型对美国GDP增长率预测的评估。不同方法的比较","authors":"F. Gobbi","doi":"10.2139/ssrn.3641831","DOIUrl":null,"url":null,"abstract":"Abstract\n\nThe aim of the paper is to compare the forecasting performance of a class of statedependent autoregressive (SDAR) models for univariate time series with two\nalternative families of nonlinear models, such as the SETAR and the GARCH\nmodels. The study is conducted on US GDP growth rate using quarterly data. Two\nmethods of forecast comparison are employed. The first method consists in\nevaluation the average performance by using two measures such as the root mean\nsquare error (RMSE) and the mean absolute error (MAE) over different forecast\nhorizons, while the second method make use of one of the most used statistical test\nto compare the accuracy of two forecast methods such as the Diebold-Mariano test.\n\nJEL classification numbers: C22, E37, F47.\nKeywords: Nonlinear models for time series, GDP growth rate, Forecasting\naccuracy.","PeriodicalId":308524,"journal":{"name":"ERN: Other Econometrics: Applied Econometric Modeling in Forecasting (Topic)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluating Forecasts from State-Dependent Autoregressive Models for US GDP Growth Rate. Comparison with Alternative Approaches\",\"authors\":\"F. Gobbi\",\"doi\":\"10.2139/ssrn.3641831\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract\\n\\nThe aim of the paper is to compare the forecasting performance of a class of statedependent autoregressive (SDAR) models for univariate time series with two\\nalternative families of nonlinear models, such as the SETAR and the GARCH\\nmodels. The study is conducted on US GDP growth rate using quarterly data. Two\\nmethods of forecast comparison are employed. The first method consists in\\nevaluation the average performance by using two measures such as the root mean\\nsquare error (RMSE) and the mean absolute error (MAE) over different forecast\\nhorizons, while the second method make use of one of the most used statistical test\\nto compare the accuracy of two forecast methods such as the Diebold-Mariano test.\\n\\nJEL classification numbers: C22, E37, F47.\\nKeywords: Nonlinear models for time series, GDP growth rate, Forecasting\\naccuracy.\",\"PeriodicalId\":308524,\"journal\":{\"name\":\"ERN: Other Econometrics: Applied Econometric Modeling in Forecasting (Topic)\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ERN: Other Econometrics: Applied Econometric Modeling in Forecasting (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3641831\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Other Econometrics: Applied Econometric Modeling in Forecasting (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3641831","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要本文的目的是比较一类状态相关自回归(SDAR)模型与两种可选的非线性模型(SETAR和GARCHmodels)对单变量时间序列的预测性能。该研究是使用季度数据对美国GDP增长率进行的。采用了两种预测比较方法。第一种方法是使用均方根误差(RMSE)和平均绝对误差(MAE)等两种度量来评估不同预测范围内的平均性能,而第二种方法是使用最常用的统计检验之一来比较两种预测方法的准确性,如Diebold-Mariano检验。JEL分类号:C22, E37, F47。关键词:非线性时间序列模型,GDP增长率,预测精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Evaluating Forecasts from State-Dependent Autoregressive Models for US GDP Growth Rate. Comparison with Alternative Approaches
Abstract The aim of the paper is to compare the forecasting performance of a class of statedependent autoregressive (SDAR) models for univariate time series with two alternative families of nonlinear models, such as the SETAR and the GARCH models. The study is conducted on US GDP growth rate using quarterly data. Two methods of forecast comparison are employed. The first method consists in evaluation the average performance by using two measures such as the root mean square error (RMSE) and the mean absolute error (MAE) over different forecast horizons, while the second method make use of one of the most used statistical test to compare the accuracy of two forecast methods such as the Diebold-Mariano test. JEL classification numbers: C22, E37, F47. Keywords: Nonlinear models for time series, GDP growth rate, Forecasting accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Embrace the Differences: Revisiting the Pollyvote Method of Combining Forecasts for U.S. Presidential Elections (2004 to 2020) A Century of Economic Policy Uncertainty Through the French-Canadian Lens Informational Efficiency and Behaviour Within In-Play Prediction Markets A New Class of Robust Observation-Driven Models Modelling and Forecasting of the Nigerian Stock Exchange.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1