处理连续行为的细化:基于Event-B的证明方法

G. Dupont, Y. A. Ameur, M. Pantel, N. Singh
{"title":"处理连续行为的细化:基于Event-B的证明方法","authors":"G. Dupont, Y. A. Ameur, M. Pantel, N. Singh","doi":"10.1109/TASE.2019.00-25","DOIUrl":null,"url":null,"abstract":"Cyber-physical systems (CPS) are taking a crucial role in various areas of our society and industry. Yet, because of their hybrid nature (i.e. the integration of both continuous and discrete features), their design and verification are not easy to handle, in particular when they are part of a critical system. Their certification requires to exhibit a formal argumentation that formal methods should be able to provide. This paper addresses the formal development of CPS using correct-by-construction refinement and proof based approaches. It relies on the Event-B formal method. In addition to modeling both the discrete and continuous parts of a CPS, this paper presents a novel approach in two steps. First it shows that the generic formal model we have defined, integrating both discrete and continuous behaviors, can be instantiated by various kinds of CPS. Fundamentally, continuous behaviors modeled by differential equations mingle with discrete transition systems (mode automaton), which model discrete behaviors. Here, refinement is used as a decomposition mechanism. Second, it expands the refinement operation, well mastered in the discrete world, to cover continuous behaviors. We show that different levels of abstraction of continuous aspects can be glued in a refinement chain. The proposed approach has been completely formalized using Event-B on the Rodin platform and a case study based on water tanks is used to illustrate it.","PeriodicalId":183749,"journal":{"name":"2019 International Symposium on Theoretical Aspects of Software Engineering (TASE)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Handling Refinement of Continuous Behaviors: A Proof Based Approach with Event-B\",\"authors\":\"G. Dupont, Y. A. Ameur, M. Pantel, N. Singh\",\"doi\":\"10.1109/TASE.2019.00-25\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cyber-physical systems (CPS) are taking a crucial role in various areas of our society and industry. Yet, because of their hybrid nature (i.e. the integration of both continuous and discrete features), their design and verification are not easy to handle, in particular when they are part of a critical system. Their certification requires to exhibit a formal argumentation that formal methods should be able to provide. This paper addresses the formal development of CPS using correct-by-construction refinement and proof based approaches. It relies on the Event-B formal method. In addition to modeling both the discrete and continuous parts of a CPS, this paper presents a novel approach in two steps. First it shows that the generic formal model we have defined, integrating both discrete and continuous behaviors, can be instantiated by various kinds of CPS. Fundamentally, continuous behaviors modeled by differential equations mingle with discrete transition systems (mode automaton), which model discrete behaviors. Here, refinement is used as a decomposition mechanism. Second, it expands the refinement operation, well mastered in the discrete world, to cover continuous behaviors. We show that different levels of abstraction of continuous aspects can be glued in a refinement chain. The proposed approach has been completely formalized using Event-B on the Rodin platform and a case study based on water tanks is used to illustrate it.\",\"PeriodicalId\":183749,\"journal\":{\"name\":\"2019 International Symposium on Theoretical Aspects of Software Engineering (TASE)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Symposium on Theoretical Aspects of Software Engineering (TASE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TASE.2019.00-25\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Symposium on Theoretical Aspects of Software Engineering (TASE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TASE.2019.00-25","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

信息物理系统(CPS)在我们社会和工业的各个领域发挥着至关重要的作用。然而,由于它们的混合性质(即连续和离散特征的集成),它们的设计和验证不容易处理,特别是当它们是关键系统的一部分时。他们的证明要求展示正式方法应该能够提供的正式论证。本文讨论了使用按构造修正和基于证明的方法来正式开发CPS。它依赖于Event-B形式化方法。除了对CPS的离散部分和连续部分进行建模外,本文还提出了一种分两个步骤的新方法。首先,它表明我们所定义的集成离散和连续行为的一般形式模型可以由各种CPS实例化。基本上,由微分方程建模的连续行为与离散过渡系统(模式自动机)混合在一起,后者对离散行为进行建模。在这里,细化被用作分解机制。其次,它扩展了在离散世界中很好地掌握的精化操作,以涵盖连续行为。我们展示了连续方面的不同抽象级别可以粘合在精化链中。所提出的方法已经在Rodin平台上使用Event-B完全形式化,并使用基于水箱的案例研究来说明它。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Handling Refinement of Continuous Behaviors: A Proof Based Approach with Event-B
Cyber-physical systems (CPS) are taking a crucial role in various areas of our society and industry. Yet, because of their hybrid nature (i.e. the integration of both continuous and discrete features), their design and verification are not easy to handle, in particular when they are part of a critical system. Their certification requires to exhibit a formal argumentation that formal methods should be able to provide. This paper addresses the formal development of CPS using correct-by-construction refinement and proof based approaches. It relies on the Event-B formal method. In addition to modeling both the discrete and continuous parts of a CPS, this paper presents a novel approach in two steps. First it shows that the generic formal model we have defined, integrating both discrete and continuous behaviors, can be instantiated by various kinds of CPS. Fundamentally, continuous behaviors modeled by differential equations mingle with discrete transition systems (mode automaton), which model discrete behaviors. Here, refinement is used as a decomposition mechanism. Second, it expands the refinement operation, well mastered in the discrete world, to cover continuous behaviors. We show that different levels of abstraction of continuous aspects can be glued in a refinement chain. The proposed approach has been completely formalized using Event-B on the Rodin platform and a case study based on water tanks is used to illustrate it.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
IMSpec: An Extensible Approach to Exploring the Incorrect Usage of APIs A Quantitative Safety Verification Approach for the Decision-making Process of Autonomous Driving Distributed Mediator Hardware Tripartite Synapse Architecture based on Stochastic Computing A Denotational Semantics for Dynamic Architectures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1