基于归纳逻辑编程的博客规则抽取

N. Chikara, M. Koshimura, H. Fujita, R. Hasegawa
{"title":"基于归纳逻辑编程的博客规则抽取","authors":"N. Chikara, M. Koshimura, H. Fujita, R. Hasegawa","doi":"10.1109/WI-IAT.2010.235","DOIUrl":null,"url":null,"abstract":"Information recommender system attempts to present information that is likely to be useful for the user. Showing recommendation reason is an important role of the system. However, current recommender systems give only simple or quantitative reasons for the recommendation. In this paper, we aim at giving precise and non-quantitative reasons which are also easy to understand. We make use of formulas in first-order predicate logic for explaining the reason. In order to build such formulas, we use Inductive Logic Programming. We succeeded to extract several useful formulas from blogs.","PeriodicalId":340211,"journal":{"name":"2010 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Rule Extraction from Blog Using Inductive Logic Programming\",\"authors\":\"N. Chikara, M. Koshimura, H. Fujita, R. Hasegawa\",\"doi\":\"10.1109/WI-IAT.2010.235\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Information recommender system attempts to present information that is likely to be useful for the user. Showing recommendation reason is an important role of the system. However, current recommender systems give only simple or quantitative reasons for the recommendation. In this paper, we aim at giving precise and non-quantitative reasons which are also easy to understand. We make use of formulas in first-order predicate logic for explaining the reason. In order to build such formulas, we use Inductive Logic Programming. We succeeded to extract several useful formulas from blogs.\",\"PeriodicalId\":340211,\"journal\":{\"name\":\"2010 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WI-IAT.2010.235\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WI-IAT.2010.235","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

信息推荐系统试图呈现对用户可能有用的信息。显示推荐理由是系统的一个重要功能。然而,目前的推荐系统只给出简单或定量的推荐理由。在本文中,我们的目的是给出准确的和非定量的原因,也容易理解。我们利用一阶谓词逻辑中的公式来解释原因。为了建立这样的公式,我们使用归纳逻辑编程。我们成功地从博客中提取了几个有用的公式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Rule Extraction from Blog Using Inductive Logic Programming
Information recommender system attempts to present information that is likely to be useful for the user. Showing recommendation reason is an important role of the system. However, current recommender systems give only simple or quantitative reasons for the recommendation. In this paper, we aim at giving precise and non-quantitative reasons which are also easy to understand. We make use of formulas in first-order predicate logic for explaining the reason. In order to build such formulas, we use Inductive Logic Programming. We succeeded to extract several useful formulas from blogs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Game Theory for Security: Lessons Learned from Deployed Applications A Decision Rule Method for Assessing the Completeness and Consistency of a Data Warehouse Semantic Structure Content for Dynamic Web Pages Enhancing the Performance of Metadata Service for Cloud Computing Improving Diversity of Focused Summaries through the Negative Endorsements of Redundant Facts
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1