锤式过滤器:鲁棒保护和低硬件开销的方法

Kwangrae Kim, Jeonghyun Woo, Junsu Kim, Ki-Seok Chung
{"title":"锤式过滤器:鲁棒保护和低硬件开销的方法","authors":"Kwangrae Kim, Jeonghyun Woo, Junsu Kim, Ki-Seok Chung","doi":"10.1109/ICCD53106.2021.00043","DOIUrl":null,"url":null,"abstract":"The continuous scaling-down of the dynamic random access memory (DRAM) manufacturing process has made it possible to improve DRAM density. However, it makes small DRAM cells susceptible to electromagnetic interference between nearby cells. Unless DRAM cells are adequately isolated from each other, the frequent switching access of some cells may lead to unintended bit flips in adjacent cells. This phenomenon is commonly referred to as RowHammer. It is often considered a security issue because unusually frequent accesses to a small set of rows generated by malicious attacks can cause bit flips. Such bit flips may also be caused by general applications. Although several solutions have been proposed, most approaches either incur excessive area overhead or exhibit limited prevention capabilities against maliciously crafted attack patterns. Therefore, the goals of this study are (1) to mitigate RowHammer, even when the number of aggressor rows increases and attack patterns become complicated, and (2) to implement the method with a low area overhead.We propose a robust hardware-based protection method for RowHammer attacks with a low hardware cost called HammerFilter, which employs a modified version of the counting bloom filter. It tracks all attacking rows efficiently by leveraging the fact that the counting bloom filter is a space-efficient data structure, and we add an operation, HALF-DELETE, to mitigate the energy overhead. According to our experimental results, the proposed method can completely prevent bit flips when facing artificially crafted attack patterns (five patterns in our experiments), whereas state-of-the-art probabilistic solutions can only mitigate less than 56% of bit flips on average. Furthermore, the proposed method has a much lower area cost compared to existing counter-based solutions (40.6× better than TWiCe and 2.3× better than Graphene).","PeriodicalId":154014,"journal":{"name":"2021 IEEE 39th International Conference on Computer Design (ICCD)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"HammerFilter: Robust Protection and Low Hardware Overhead Method for RowHammer\",\"authors\":\"Kwangrae Kim, Jeonghyun Woo, Junsu Kim, Ki-Seok Chung\",\"doi\":\"10.1109/ICCD53106.2021.00043\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The continuous scaling-down of the dynamic random access memory (DRAM) manufacturing process has made it possible to improve DRAM density. However, it makes small DRAM cells susceptible to electromagnetic interference between nearby cells. Unless DRAM cells are adequately isolated from each other, the frequent switching access of some cells may lead to unintended bit flips in adjacent cells. This phenomenon is commonly referred to as RowHammer. It is often considered a security issue because unusually frequent accesses to a small set of rows generated by malicious attacks can cause bit flips. Such bit flips may also be caused by general applications. Although several solutions have been proposed, most approaches either incur excessive area overhead or exhibit limited prevention capabilities against maliciously crafted attack patterns. Therefore, the goals of this study are (1) to mitigate RowHammer, even when the number of aggressor rows increases and attack patterns become complicated, and (2) to implement the method with a low area overhead.We propose a robust hardware-based protection method for RowHammer attacks with a low hardware cost called HammerFilter, which employs a modified version of the counting bloom filter. It tracks all attacking rows efficiently by leveraging the fact that the counting bloom filter is a space-efficient data structure, and we add an operation, HALF-DELETE, to mitigate the energy overhead. According to our experimental results, the proposed method can completely prevent bit flips when facing artificially crafted attack patterns (five patterns in our experiments), whereas state-of-the-art probabilistic solutions can only mitigate less than 56% of bit flips on average. Furthermore, the proposed method has a much lower area cost compared to existing counter-based solutions (40.6× better than TWiCe and 2.3× better than Graphene).\",\"PeriodicalId\":154014,\"journal\":{\"name\":\"2021 IEEE 39th International Conference on Computer Design (ICCD)\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 39th International Conference on Computer Design (ICCD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCD53106.2021.00043\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 39th International Conference on Computer Design (ICCD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCD53106.2021.00043","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

动态随机存取存储器(DRAM)制造工艺的不断缩小使得提高DRAM密度成为可能。然而,它使小型DRAM单元容易受到附近单元之间的电磁干扰。除非DRAM单元彼此充分隔离,否则某些单元的频繁开关访问可能导致相邻单元中意外的位翻转。这种现象通常被称为RowHammer。它通常被认为是一个安全问题,因为对恶意攻击生成的一小部分行的异常频繁的访问可能导致位翻转。这种位翻转也可能由一般应用引起。尽管已经提出了几种解决方案,但大多数方法要么导致过多的面积开销,要么对恶意攻击模式的防御能力有限。因此,本研究的目标是(1)减轻RowHammer,即使攻击者行数增加且攻击模式变得复杂,(2)以低面积开销实现该方法。我们提出了一种鲁棒的基于硬件的RowHammer攻击保护方法,其硬件成本较低,称为HammerFilter,它采用了改进版本的计数布隆滤波器。它利用计数布隆过滤器是一种节省空间的数据结构这一事实,有效地跟踪所有攻击行,并且我们添加了一个操作HALF-DELETE,以减轻能量开销。根据我们的实验结果,当面对人为制造的攻击模式(我们的实验中有五种模式)时,所提出的方法可以完全防止比特翻转,而最先进的概率解决方案平均只能减轻不到56%的比特翻转。此外,与现有的基于计数器的解决方案相比,所提出的方法具有更低的面积成本(比TWiCe好40.6倍,比石墨烯好2.3倍)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
HammerFilter: Robust Protection and Low Hardware Overhead Method for RowHammer
The continuous scaling-down of the dynamic random access memory (DRAM) manufacturing process has made it possible to improve DRAM density. However, it makes small DRAM cells susceptible to electromagnetic interference between nearby cells. Unless DRAM cells are adequately isolated from each other, the frequent switching access of some cells may lead to unintended bit flips in adjacent cells. This phenomenon is commonly referred to as RowHammer. It is often considered a security issue because unusually frequent accesses to a small set of rows generated by malicious attacks can cause bit flips. Such bit flips may also be caused by general applications. Although several solutions have been proposed, most approaches either incur excessive area overhead or exhibit limited prevention capabilities against maliciously crafted attack patterns. Therefore, the goals of this study are (1) to mitigate RowHammer, even when the number of aggressor rows increases and attack patterns become complicated, and (2) to implement the method with a low area overhead.We propose a robust hardware-based protection method for RowHammer attacks with a low hardware cost called HammerFilter, which employs a modified version of the counting bloom filter. It tracks all attacking rows efficiently by leveraging the fact that the counting bloom filter is a space-efficient data structure, and we add an operation, HALF-DELETE, to mitigate the energy overhead. According to our experimental results, the proposed method can completely prevent bit flips when facing artificially crafted attack patterns (five patterns in our experiments), whereas state-of-the-art probabilistic solutions can only mitigate less than 56% of bit flips on average. Furthermore, the proposed method has a much lower area cost compared to existing counter-based solutions (40.6× better than TWiCe and 2.3× better than Graphene).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Smart-DNN: Efficiently Reducing the Memory Requirements of Running Deep Neural Networks on Resource-constrained Platforms CoRe-ECO: Concurrent Refinement of Detailed Place-and-Route for an Efficient ECO Automation Accurate and Fast Performance Modeling of Processors with Decoupled Front-end Block-LSM: An Ether-aware Block-ordered LSM-tree based Key-Value Storage Engine Dynamic File Cache Optimization for Hybrid SSDs with High-Density and Low-Cost Flash Memory
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1