基于mapreduce的k近邻大数据分类方法

Jesús Maillo, I. Triguero, F. Herrera
{"title":"基于mapreduce的k近邻大数据分类方法","authors":"Jesús Maillo, I. Triguero, F. Herrera","doi":"10.1109/Trustcom.2015.577","DOIUrl":null,"url":null,"abstract":"The k-Nearest Neighbor classifier is one of the most well known methods in data mining because of its effectiveness and simplicity. Due to its way of working, the application of this classifier may be restricted to problems with a certain number of examples, especially, when the runtime matters. However, the classification of large amounts of data is becoming a necessary task in a great number of real-world applications. This topic is known as big data classification, in which standard data mining techniques normally fail to tackle such volume of data. In this contribution we propose a MapReduce-based approach for k-Nearest neighbor classification. This model allows us to simultaneously classify large amounts of unseen cases (test examples) against a big (training) dataset. To do so, the map phase will determine the k-nearest neighbors in different splits of the data. Afterwards, the reduce stage will compute the definitive neighbors from the list obtained in the map phase. The designed model allows the k-Nearest neighbor classifier to scale to datasets of arbitrary size, just by simply adding more computing nodes if necessary. Moreover, this parallel implementation provides the exact classification rate as the original k-NN model. The conducted experiments, using a dataset with up to 1 million instances, show the promising scalability capabilities of the proposed approach.","PeriodicalId":277092,"journal":{"name":"2015 IEEE Trustcom/BigDataSE/ISPA","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"73","resultStr":"{\"title\":\"A MapReduce-Based k-Nearest Neighbor Approach for Big Data Classification\",\"authors\":\"Jesús Maillo, I. Triguero, F. Herrera\",\"doi\":\"10.1109/Trustcom.2015.577\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The k-Nearest Neighbor classifier is one of the most well known methods in data mining because of its effectiveness and simplicity. Due to its way of working, the application of this classifier may be restricted to problems with a certain number of examples, especially, when the runtime matters. However, the classification of large amounts of data is becoming a necessary task in a great number of real-world applications. This topic is known as big data classification, in which standard data mining techniques normally fail to tackle such volume of data. In this contribution we propose a MapReduce-based approach for k-Nearest neighbor classification. This model allows us to simultaneously classify large amounts of unseen cases (test examples) against a big (training) dataset. To do so, the map phase will determine the k-nearest neighbors in different splits of the data. Afterwards, the reduce stage will compute the definitive neighbors from the list obtained in the map phase. The designed model allows the k-Nearest neighbor classifier to scale to datasets of arbitrary size, just by simply adding more computing nodes if necessary. Moreover, this parallel implementation provides the exact classification rate as the original k-NN model. The conducted experiments, using a dataset with up to 1 million instances, show the promising scalability capabilities of the proposed approach.\",\"PeriodicalId\":277092,\"journal\":{\"name\":\"2015 IEEE Trustcom/BigDataSE/ISPA\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"73\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE Trustcom/BigDataSE/ISPA\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/Trustcom.2015.577\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Trustcom/BigDataSE/ISPA","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/Trustcom.2015.577","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 73

摘要

k近邻分类器是数据挖掘中最著名的方法之一,因为它的有效性和简单性。由于其工作方式,该分类器的应用可能仅限于具有一定数量的示例的问题,特别是在运行时很重要的情况下。然而,在大量实际应用中,对大量数据进行分类正成为一项必要的任务。这个主题被称为大数据分类,在这个主题中,标准的数据挖掘技术通常无法处理如此大量的数据。在这篇文章中,我们提出了一种基于mapreduce的k-最近邻分类方法。这个模型允许我们同时根据一个大的(训练)数据集对大量看不见的案例(测试示例)进行分类。为此,映射阶段将在数据的不同分割中确定k个最近的邻居。然后,reduce阶段将从映射阶段获得的列表中计算最终邻居。设计的模型允许k-最近邻分类器扩展到任意大小的数据集,只需在必要时添加更多的计算节点。此外,这种并行实现提供了与原始k-NN模型相同的分类率。使用多达100万个实例的数据集进行的实验表明,所提出的方法具有良好的可扩展性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A MapReduce-Based k-Nearest Neighbor Approach for Big Data Classification
The k-Nearest Neighbor classifier is one of the most well known methods in data mining because of its effectiveness and simplicity. Due to its way of working, the application of this classifier may be restricted to problems with a certain number of examples, especially, when the runtime matters. However, the classification of large amounts of data is becoming a necessary task in a great number of real-world applications. This topic is known as big data classification, in which standard data mining techniques normally fail to tackle such volume of data. In this contribution we propose a MapReduce-based approach for k-Nearest neighbor classification. This model allows us to simultaneously classify large amounts of unseen cases (test examples) against a big (training) dataset. To do so, the map phase will determine the k-nearest neighbors in different splits of the data. Afterwards, the reduce stage will compute the definitive neighbors from the list obtained in the map phase. The designed model allows the k-Nearest neighbor classifier to scale to datasets of arbitrary size, just by simply adding more computing nodes if necessary. Moreover, this parallel implementation provides the exact classification rate as the original k-NN model. The conducted experiments, using a dataset with up to 1 million instances, show the promising scalability capabilities of the proposed approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Novel Sensor Deployment Approach Using Fruit Fly Optimization Algorithm in Wireless Sensor Networks Study on the Coverage of Adaptive Wireless Sensor Network Based on Trust A Security Topology Protocol of Wireless Sensor Networks Based on Community Detection and Energy Aware WAVE: Secure Wireless Pairing Exploiting Human Body Movements Quantitative Trustworthy Evaluation Scheme for Trust Routing Scheme in Wireless Sensor Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1