T. Toi, Noritsugu Nakamura, T. Fujii, Toshiro Kitaoka, K. Togawa, K. Furuta, T. Awashima
{"title":"动态可重构处理器中优化时间和空间复用计算","authors":"T. Toi, Noritsugu Nakamura, T. Fujii, Toshiro Kitaoka, K. Togawa, K. Furuta, T. Awashima","doi":"10.1109/FPT.2013.6718338","DOIUrl":null,"url":null,"abstract":"One of the characteristics of our coarse-grained dynamically reconfigurable processor is that it uses the same operational resource for both control-intensive and dataintensive code segments. We maximize throughput from the knowledge of high-level synthesis under timing constraints. Because the optimal clock speeds for both code segments are different, a dynamic frequency control is introduced to shorten the total execution time. A state transition controller (STC) that handles the control step can change the clock speed for every cycle. For control-intensive code segments, the STC delay is shortened by a rollback mechanism, which looks ahead to the next control step and rolls back if a different control step is actually selected. For the data-intensive code segments, the delay is shortened by fully synchronized synthesis. Experimental results show that throughputs have increased from 18% to 56% with the combination of these optimizations. A chip was fabricated with our 40-nm low-power process technology.","PeriodicalId":344469,"journal":{"name":"2013 International Conference on Field-Programmable Technology (FPT)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Optimizing time and space multiplexed computation in a dynamically reconfigurable processor\",\"authors\":\"T. Toi, Noritsugu Nakamura, T. Fujii, Toshiro Kitaoka, K. Togawa, K. Furuta, T. Awashima\",\"doi\":\"10.1109/FPT.2013.6718338\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One of the characteristics of our coarse-grained dynamically reconfigurable processor is that it uses the same operational resource for both control-intensive and dataintensive code segments. We maximize throughput from the knowledge of high-level synthesis under timing constraints. Because the optimal clock speeds for both code segments are different, a dynamic frequency control is introduced to shorten the total execution time. A state transition controller (STC) that handles the control step can change the clock speed for every cycle. For control-intensive code segments, the STC delay is shortened by a rollback mechanism, which looks ahead to the next control step and rolls back if a different control step is actually selected. For the data-intensive code segments, the delay is shortened by fully synchronized synthesis. Experimental results show that throughputs have increased from 18% to 56% with the combination of these optimizations. A chip was fabricated with our 40-nm low-power process technology.\",\"PeriodicalId\":344469,\"journal\":{\"name\":\"2013 International Conference on Field-Programmable Technology (FPT)\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 International Conference on Field-Programmable Technology (FPT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FPT.2013.6718338\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Conference on Field-Programmable Technology (FPT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FPT.2013.6718338","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Optimizing time and space multiplexed computation in a dynamically reconfigurable processor
One of the characteristics of our coarse-grained dynamically reconfigurable processor is that it uses the same operational resource for both control-intensive and dataintensive code segments. We maximize throughput from the knowledge of high-level synthesis under timing constraints. Because the optimal clock speeds for both code segments are different, a dynamic frequency control is introduced to shorten the total execution time. A state transition controller (STC) that handles the control step can change the clock speed for every cycle. For control-intensive code segments, the STC delay is shortened by a rollback mechanism, which looks ahead to the next control step and rolls back if a different control step is actually selected. For the data-intensive code segments, the delay is shortened by fully synchronized synthesis. Experimental results show that throughputs have increased from 18% to 56% with the combination of these optimizations. A chip was fabricated with our 40-nm low-power process technology.