用于自回归移动平均模型选择的递归神经网络

Bei Chen, Beat Buesser, Kelsey L. DiPietro
{"title":"用于自回归移动平均模型选择的递归神经网络","authors":"Bei Chen, Beat Buesser, Kelsey L. DiPietro","doi":"10.1109/ICBK.2019.00013","DOIUrl":null,"url":null,"abstract":"Selecting an appropriate Autoregressive Moving Average (ARMA) model for a given time series is a classic problem in statistics that is encountered in many applications. Typically this involves a human-in-the-loop and repeated parameter evaluation of candidate models, which is not ideal for learning at scale. We propose a Long Short Term Memory (LSTM) classification model for automatic ARMA model selection. Our numerical experiments show that the proposed method is fast and provides better accuracy than the traditional Box-Jenkins approach based on autocorrelations and model selection criterion. We demonstrate the application of our approach with a case study on volatility prediction of daily stock prices.","PeriodicalId":383917,"journal":{"name":"2019 IEEE International Conference on Big Knowledge (ICBK)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Recurrent Neural Networks for Autoregressive Moving Average Model Selection\",\"authors\":\"Bei Chen, Beat Buesser, Kelsey L. DiPietro\",\"doi\":\"10.1109/ICBK.2019.00013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Selecting an appropriate Autoregressive Moving Average (ARMA) model for a given time series is a classic problem in statistics that is encountered in many applications. Typically this involves a human-in-the-loop and repeated parameter evaluation of candidate models, which is not ideal for learning at scale. We propose a Long Short Term Memory (LSTM) classification model for automatic ARMA model selection. Our numerical experiments show that the proposed method is fast and provides better accuracy than the traditional Box-Jenkins approach based on autocorrelations and model selection criterion. We demonstrate the application of our approach with a case study on volatility prediction of daily stock prices.\",\"PeriodicalId\":383917,\"journal\":{\"name\":\"2019 IEEE International Conference on Big Knowledge (ICBK)\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE International Conference on Big Knowledge (ICBK)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICBK.2019.00013\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Conference on Big Knowledge (ICBK)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICBK.2019.00013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

为给定的时间序列选择合适的自回归移动平均(ARMA)模型是统计学中的一个经典问题,在许多应用中都会遇到。通常,这涉及到人在循环和候选模型的重复参数评估,这对于大规模学习来说并不理想。提出了一种用于ARMA模型自动选择的长短期记忆(LSTM)分类模型。数值实验表明,该方法比基于自相关和模型选择准则的传统Box-Jenkins方法速度快,精度高。我们通过对每日股票价格波动率预测的案例研究来证明我们的方法的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Recurrent Neural Networks for Autoregressive Moving Average Model Selection
Selecting an appropriate Autoregressive Moving Average (ARMA) model for a given time series is a classic problem in statistics that is encountered in many applications. Typically this involves a human-in-the-loop and repeated parameter evaluation of candidate models, which is not ideal for learning at scale. We propose a Long Short Term Memory (LSTM) classification model for automatic ARMA model selection. Our numerical experiments show that the proposed method is fast and provides better accuracy than the traditional Box-Jenkins approach based on autocorrelations and model selection criterion. We demonstrate the application of our approach with a case study on volatility prediction of daily stock prices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Two-Stage Clustering Algorithm Based on Improved K-Means and Density Peak Clustering Matrix Profile XX: Finding and Visualizing Time Series Motifs of All Lengths using the Matrix Profile A Spatial Co-location Pattern Mining Algorithm Without Distance Thresholds Adaptive Structural Co-regularization for Unsupervised Multi-view Feature Selection Which Patient to Treat Next? Probabilistic Stream-Based Reasoning for Decision Support and Monitoring
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1