参数异质性在脉冲神经网络训练中的优势

Nicolas Perez-Nieves, Vincent C. H. Leung, P. Dragotti, Dan F. M. Goodman
{"title":"参数异质性在脉冲神经网络训练中的优势","authors":"Nicolas Perez-Nieves, Vincent C. H. Leung, P. Dragotti, Dan F. M. Goodman","doi":"10.32470/ccn.2019.1173-0","DOIUrl":null,"url":null,"abstract":"It is very common in studies of the learning capabilities of spiking neural networks (SNNs) to use homogeneous neural and synaptic parameters (time constants, thresholds, etc.). Even in studies in which these parameters are distributed heterogeneously, the advantages or disadvantages of the heterogeneity have rarely been studied in depth. By contrast, in the brain, neurons and synapses are highly diverse, leading naturally to the hypothesis that this heterogeneity may be advantageous for learning. Starting from two state-of-the-art methods for training spiking neural networks (Nicola & Clopath, 2017; Shrestha & Orchard, 2018), we found that adding parameter heterogeneity reduced errors when the network had to learn more complex patterns, increased robustness to hyperparameter mistuning, and reduced the number of training iterations required. We propose that neural heterogeneity may be an important principle for brains to learn robustly in real world environments with highly complex structure, and where task-specific hyperparameter tuning may be impossible. Consequently, heterogeneity may also be a good candidate design principle for artificial neural networks, to reduce the need for expensive hyperparameter tuning as well as for reducing training time.","PeriodicalId":281121,"journal":{"name":"2019 Conference on Cognitive Computational Neuroscience","volume":"154 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advantages of heterogeneity of parameters in spiking neural network training\",\"authors\":\"Nicolas Perez-Nieves, Vincent C. H. Leung, P. Dragotti, Dan F. M. Goodman\",\"doi\":\"10.32470/ccn.2019.1173-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is very common in studies of the learning capabilities of spiking neural networks (SNNs) to use homogeneous neural and synaptic parameters (time constants, thresholds, etc.). Even in studies in which these parameters are distributed heterogeneously, the advantages or disadvantages of the heterogeneity have rarely been studied in depth. By contrast, in the brain, neurons and synapses are highly diverse, leading naturally to the hypothesis that this heterogeneity may be advantageous for learning. Starting from two state-of-the-art methods for training spiking neural networks (Nicola & Clopath, 2017; Shrestha & Orchard, 2018), we found that adding parameter heterogeneity reduced errors when the network had to learn more complex patterns, increased robustness to hyperparameter mistuning, and reduced the number of training iterations required. We propose that neural heterogeneity may be an important principle for brains to learn robustly in real world environments with highly complex structure, and where task-specific hyperparameter tuning may be impossible. Consequently, heterogeneity may also be a good candidate design principle for artificial neural networks, to reduce the need for expensive hyperparameter tuning as well as for reducing training time.\",\"PeriodicalId\":281121,\"journal\":{\"name\":\"2019 Conference on Cognitive Computational Neuroscience\",\"volume\":\"154 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 Conference on Cognitive Computational Neuroscience\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32470/ccn.2019.1173-0\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Conference on Cognitive Computational Neuroscience","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32470/ccn.2019.1173-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在研究尖峰神经网络(snn)的学习能力时,使用均匀的神经和突触参数(时间常数、阈值等)是很常见的。即使在这些参数是非均匀分布的研究中,也很少深入研究这种非均匀性的优缺点。相比之下,在大脑中,神经元和突触是高度多样化的,自然导致这种异质性可能有利于学习的假设。从两种最先进的训练尖峰神经网络的方法开始(Nicola & Clopath, 2017;Shrestha & Orchard, 2018),我们发现,当网络必须学习更复杂的模式时,添加参数异质性减少了错误,增加了对超参数失调的鲁棒性,并减少了所需的训练迭代次数。我们提出,神经异质性可能是大脑在具有高度复杂结构的现实世界环境中稳健学习的重要原则,在这些环境中,特定任务的超参数调整可能是不可能的。因此,异质性也可能是人工神经网络的一个很好的候选设计原则,以减少对昂贵的超参数调优的需求,并减少训练时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Advantages of heterogeneity of parameters in spiking neural network training
It is very common in studies of the learning capabilities of spiking neural networks (SNNs) to use homogeneous neural and synaptic parameters (time constants, thresholds, etc.). Even in studies in which these parameters are distributed heterogeneously, the advantages or disadvantages of the heterogeneity have rarely been studied in depth. By contrast, in the brain, neurons and synapses are highly diverse, leading naturally to the hypothesis that this heterogeneity may be advantageous for learning. Starting from two state-of-the-art methods for training spiking neural networks (Nicola & Clopath, 2017; Shrestha & Orchard, 2018), we found that adding parameter heterogeneity reduced errors when the network had to learn more complex patterns, increased robustness to hyperparameter mistuning, and reduced the number of training iterations required. We propose that neural heterogeneity may be an important principle for brains to learn robustly in real world environments with highly complex structure, and where task-specific hyperparameter tuning may be impossible. Consequently, heterogeneity may also be a good candidate design principle for artificial neural networks, to reduce the need for expensive hyperparameter tuning as well as for reducing training time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Narratives as Networks: Predicting Memory from the Structure of Naturalistic Events Subtractive gating improves generalization in working memory tasks Do LSTMs know about Principle C? Unfolding of multisensory inference in the brain and behavior Adversarial Training of Neural Encoding Models on Population Spike Trains
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1