模板化的移动立方体——表面渲染的低计算方法

C. K. Manikandtan, S. Resmi, S. Sibi, R. Kumar, G. S. Harikumaran Nair
{"title":"模板化的移动立方体——表面渲染的低计算方法","authors":"C. K. Manikandtan, S. Resmi, S. Sibi, R. Kumar, G. S. Harikumaran Nair","doi":"10.1109/RAICS.2013.6745485","DOIUrl":null,"url":null,"abstract":"Surface generation from high resolution datasets using triangulation algorithms like marching cubes require large amounts of computational time for the generation and interpolation of vertices. Here we propose a templated method of generating triangles which has far less computation involved and saves on CPU cycles and memory. Each cube orientation corresponding to the boundary cases in the original algorithm is listed in a prebuilt table of templated triangles. The template created using binary input may be further smoothened using cost functions related to input image data.","PeriodicalId":184155,"journal":{"name":"2013 IEEE Recent Advances in Intelligent Computational Systems (RAICS)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Templated marching cubes — A low computation approach to surface rendering\",\"authors\":\"C. K. Manikandtan, S. Resmi, S. Sibi, R. Kumar, G. S. Harikumaran Nair\",\"doi\":\"10.1109/RAICS.2013.6745485\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Surface generation from high resolution datasets using triangulation algorithms like marching cubes require large amounts of computational time for the generation and interpolation of vertices. Here we propose a templated method of generating triangles which has far less computation involved and saves on CPU cycles and memory. Each cube orientation corresponding to the boundary cases in the original algorithm is listed in a prebuilt table of templated triangles. The template created using binary input may be further smoothened using cost functions related to input image data.\",\"PeriodicalId\":184155,\"journal\":{\"name\":\"2013 IEEE Recent Advances in Intelligent Computational Systems (RAICS)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE Recent Advances in Intelligent Computational Systems (RAICS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RAICS.2013.6745485\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Recent Advances in Intelligent Computational Systems (RAICS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RAICS.2013.6745485","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

从高分辨率数据集使用三角测量算法(如行军立方体)生成表面需要大量的计算时间来生成和插值顶点。在这里,我们提出了一种模板化的生成三角形的方法,它所涉及的计算量要少得多,并且节省了CPU周期和内存。每个立方体方向对应于原始算法中的边界情况,在预先构建的模板三角形表中列出。使用二进制输入创建的模板可以使用与输入图像数据相关的代价函数进一步平滑。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Templated marching cubes — A low computation approach to surface rendering
Surface generation from high resolution datasets using triangulation algorithms like marching cubes require large amounts of computational time for the generation and interpolation of vertices. Here we propose a templated method of generating triangles which has far less computation involved and saves on CPU cycles and memory. Each cube orientation corresponding to the boundary cases in the original algorithm is listed in a prebuilt table of templated triangles. The template created using binary input may be further smoothened using cost functions related to input image data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Dynamic gesture recognition of Indian sign language considering local motion of hand using spatial location of Key Maximum Curvature Points OFDM radio based range and direction sensor for robotics applications A new built in self test pattern generator for low power dissipation and high fault coverage Reconfigurable ultrasonic beamformer Clustering of web sessions by FOGSAA
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1