多视角深度图像增强的变分贝叶斯推理框架

P. Rana, Jalil Taghia, M. Flierl
{"title":"多视角深度图像增强的变分贝叶斯推理框架","authors":"P. Rana, Jalil Taghia, M. Flierl","doi":"10.1109/ISM.2012.44","DOIUrl":null,"url":null,"abstract":"In this paper, a general model-based framework for multiview depth image enhancement is proposed. Depth imagery plays a pivotal role in emerging free-viewpoint television. This technology requires high quality virtual view synthesis to enable viewers to move freely in a dynamic real world scene. Depth imagery of different viewpoints is used to synthesize an arbitrary number of novel views. Usually, the depth imagery is estimated individually by stereo-matching algorithms and, hence, shows lack of inter-view consistency. This inconsistency affects the quality of view synthesis negatively. This paper enhances the inter-view consistency of multiview depth imagery by using a variational Bayesian inference framework. First, our approach classifies the color information in the multiview color imagery. Second, using the resulting color clusters, we classify the corresponding depth values in the multiview depth imagery. Each clustered depth image is subject to further sub clustering. Finally, the resulting mean of the sub-clusters is used to enhance the depth imagery at multiple viewpoints. Experiments show that our approach improves the quality of virtual views by up to 0.25 dB.","PeriodicalId":282528,"journal":{"name":"2012 IEEE International Symposium on Multimedia","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"A Variational Bayesian Inference Framework for Multiview Depth Image Enhancement\",\"authors\":\"P. Rana, Jalil Taghia, M. Flierl\",\"doi\":\"10.1109/ISM.2012.44\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a general model-based framework for multiview depth image enhancement is proposed. Depth imagery plays a pivotal role in emerging free-viewpoint television. This technology requires high quality virtual view synthesis to enable viewers to move freely in a dynamic real world scene. Depth imagery of different viewpoints is used to synthesize an arbitrary number of novel views. Usually, the depth imagery is estimated individually by stereo-matching algorithms and, hence, shows lack of inter-view consistency. This inconsistency affects the quality of view synthesis negatively. This paper enhances the inter-view consistency of multiview depth imagery by using a variational Bayesian inference framework. First, our approach classifies the color information in the multiview color imagery. Second, using the resulting color clusters, we classify the corresponding depth values in the multiview depth imagery. Each clustered depth image is subject to further sub clustering. Finally, the resulting mean of the sub-clusters is used to enhance the depth imagery at multiple viewpoints. Experiments show that our approach improves the quality of virtual views by up to 0.25 dB.\",\"PeriodicalId\":282528,\"journal\":{\"name\":\"2012 IEEE International Symposium on Multimedia\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE International Symposium on Multimedia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISM.2012.44\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Symposium on Multimedia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISM.2012.44","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

本文提出了一种通用的基于模型的多视点深度图像增强框架。深度图像在新兴的自由视点电视中起着举足轻重的作用。这项技术需要高质量的虚拟视图合成,使观众能够在动态的真实世界场景中自由移动。利用不同视点的深度图像来合成任意数量的新视点。通常使用立体匹配算法对深度图像进行单独估计,缺乏视点间的一致性。这种不一致会对视图合成的质量产生负面影响。本文利用变分贝叶斯推理框架增强了多视点深度图像的视间一致性。首先,我们的方法对多视图彩色图像中的颜色信息进行分类。其次,利用得到的颜色聚类对多视图深度图像中相应的深度值进行分类。每个聚类的深度图像都要进行进一步的子聚类。最后,利用子聚类的均值增强多视点深度图像。实验表明,我们的方法将虚拟视图的质量提高了0.25 dB。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Variational Bayesian Inference Framework for Multiview Depth Image Enhancement
In this paper, a general model-based framework for multiview depth image enhancement is proposed. Depth imagery plays a pivotal role in emerging free-viewpoint television. This technology requires high quality virtual view synthesis to enable viewers to move freely in a dynamic real world scene. Depth imagery of different viewpoints is used to synthesize an arbitrary number of novel views. Usually, the depth imagery is estimated individually by stereo-matching algorithms and, hence, shows lack of inter-view consistency. This inconsistency affects the quality of view synthesis negatively. This paper enhances the inter-view consistency of multiview depth imagery by using a variational Bayesian inference framework. First, our approach classifies the color information in the multiview color imagery. Second, using the resulting color clusters, we classify the corresponding depth values in the multiview depth imagery. Each clustered depth image is subject to further sub clustering. Finally, the resulting mean of the sub-clusters is used to enhance the depth imagery at multiple viewpoints. Experiments show that our approach improves the quality of virtual views by up to 0.25 dB.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Detailed Comparative Analysis of VP8 and H.264 Enhancing the MST-CSS Representation Using Robust Geometric Features, for Efficient Content Based Video Retrieval (CBVR) A Standardized Metadata Set for Annotation of Virtual and Remote Laboratories Using Wavelets and Gaussian Mixture Models for Audio Classification A Data Aware Admission Control Technique for Social Live Streams (SOLISs)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1