考虑时间特征对高危学生的早期预测

Zoe Y. R. Chen, Anna Y. Q. Huang, Owen H. T. Lu, Stephen J. H. Yang
{"title":"考虑时间特征对高危学生的早期预测","authors":"Zoe Y. R. Chen, Anna Y. Q. Huang, Owen H. T. Lu, Stephen J. H. Yang","doi":"10.1109/ICALT52272.2021.00112","DOIUrl":null,"url":null,"abstract":"Nowadays, there are more and more researches focused on prediction of learning outcome, and most of them applied quantitate type of analysis approaches. Thus, we want to apply another type of analysis approach to do early prediction. In this research, we applied temporal features and analysis approach to predict students’ learning outcomes and identify at-risk students. The result shows that using temporal features is effective on early prediction of learning outcome and there exists differences of learning behaviors between students which have different learning background.","PeriodicalId":170895,"journal":{"name":"2021 International Conference on Advanced Learning Technologies (ICALT)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Considering Temporal Features in Early Prediction of at-risk students\",\"authors\":\"Zoe Y. R. Chen, Anna Y. Q. Huang, Owen H. T. Lu, Stephen J. H. Yang\",\"doi\":\"10.1109/ICALT52272.2021.00112\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nowadays, there are more and more researches focused on prediction of learning outcome, and most of them applied quantitate type of analysis approaches. Thus, we want to apply another type of analysis approach to do early prediction. In this research, we applied temporal features and analysis approach to predict students’ learning outcomes and identify at-risk students. The result shows that using temporal features is effective on early prediction of learning outcome and there exists differences of learning behaviors between students which have different learning background.\",\"PeriodicalId\":170895,\"journal\":{\"name\":\"2021 International Conference on Advanced Learning Technologies (ICALT)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 International Conference on Advanced Learning Technologies (ICALT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICALT52272.2021.00112\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Advanced Learning Technologies (ICALT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICALT52272.2021.00112","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

目前,对学习结果预测的研究越来越多,但多采用定量分析方法。因此,我们希望应用另一种类型的分析方法来进行早期预测。在本研究中,我们运用时间特征和分析方法来预测学生的学习结果,并识别有风险的学生。结果表明,利用时间特征对学习结果进行早期预测是有效的,不同学习背景的学生在学习行为上存在差异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Considering Temporal Features in Early Prediction of at-risk students
Nowadays, there are more and more researches focused on prediction of learning outcome, and most of them applied quantitate type of analysis approaches. Thus, we want to apply another type of analysis approach to do early prediction. In this research, we applied temporal features and analysis approach to predict students’ learning outcomes and identify at-risk students. The result shows that using temporal features is effective on early prediction of learning outcome and there exists differences of learning behaviors between students which have different learning background.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Micro-Prompt: A Strategy for Designing Pedagogically Effective Assignment Free Micro-Lectures for Online Education Systems An Exploratory Study to Identify Learners' Programming Behavior Interactions Automatic and Intelligent Recommendations to Support Students’ Self-Regulation VEA: A Virtual Environment for Animal experimentation Teachers’ Information and Communication Technology (ICT) Assessment Tools: A Review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1