自动识别内在的非结构化区域在蛋白质-一个软件工具

J.Y. Yang, M. Qu Yang, Zuojie Luo, O. Ersoy
{"title":"自动识别内在的非结构化区域在蛋白质-一个软件工具","authors":"J.Y. Yang, M. Qu Yang, Zuojie Luo, O. Ersoy","doi":"10.1109/CIMA.2005.1662361","DOIUrl":null,"url":null,"abstract":"In our attempts to construct methods for automated structural and functional annotation of proteins, the prediction of intrinsically unstructured/disordered protein (IUP) regions, i.e. those with a lack of stable secondary or tertiary structure, has recently gained importance. We developed a software tool for identifying IUP and structured protein regions. The predictor uses both supervised and unsupervised learning techniques and both structural and motional information of amino acids. We demonstrate the effectiveness of our IUP predictor which utilizes feature selection, bootstrapping aggregation, boosting and consensus networking algorithms","PeriodicalId":306045,"journal":{"name":"2005 ICSC Congress on Computational Intelligence Methods and Applications","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Automated Identifying Intrinsic Unstructured Regions in Proteins - A Software Tool\",\"authors\":\"J.Y. Yang, M. Qu Yang, Zuojie Luo, O. Ersoy\",\"doi\":\"10.1109/CIMA.2005.1662361\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In our attempts to construct methods for automated structural and functional annotation of proteins, the prediction of intrinsically unstructured/disordered protein (IUP) regions, i.e. those with a lack of stable secondary or tertiary structure, has recently gained importance. We developed a software tool for identifying IUP and structured protein regions. The predictor uses both supervised and unsupervised learning techniques and both structural and motional information of amino acids. We demonstrate the effectiveness of our IUP predictor which utilizes feature selection, bootstrapping aggregation, boosting and consensus networking algorithms\",\"PeriodicalId\":306045,\"journal\":{\"name\":\"2005 ICSC Congress on Computational Intelligence Methods and Applications\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2005 ICSC Congress on Computational Intelligence Methods and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIMA.2005.1662361\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2005 ICSC Congress on Computational Intelligence Methods and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIMA.2005.1662361","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在我们试图构建蛋白质的自动结构和功能注释方法的过程中,对内在非结构/无序蛋白质(IUP)区域的预测,即那些缺乏稳定的二级或三级结构的区域,最近变得越来越重要。我们开发了一个软件工具来识别IUP和结构蛋白区域。预测器使用有监督和无监督学习技术以及氨基酸的结构和运动信息。我们证明了我们的IUP预测器的有效性,它利用了特征选择、自举聚合、增强和共识网络算法
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Automated Identifying Intrinsic Unstructured Regions in Proteins - A Software Tool
In our attempts to construct methods for automated structural and functional annotation of proteins, the prediction of intrinsically unstructured/disordered protein (IUP) regions, i.e. those with a lack of stable secondary or tertiary structure, has recently gained importance. We developed a software tool for identifying IUP and structured protein regions. The predictor uses both supervised and unsupervised learning techniques and both structural and motional information of amino acids. We demonstrate the effectiveness of our IUP predictor which utilizes feature selection, bootstrapping aggregation, boosting and consensus networking algorithms
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A comparison of fuzzy, state space with direct eigenstructure assignment, and PID controller on linearized MIMO plant model Measurement of the cross-sectional contour of H-shaped steel using multiple stereo pairs Feature selection based on bootstrapping Eigenvector methods for automated detection of time-varying biomedical signals Animal toxins: what features differentiate pore blockers from gate modifiers?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1