利用遗传算法优化污染气体模拟红外光谱识别系统

Li Meijuan, Y. Shuai, Jing Lei, Zhang Jun
{"title":"利用遗传算法优化污染气体模拟红外光谱识别系统","authors":"Li Meijuan, Y. Shuai, Jing Lei, Zhang Jun","doi":"10.1109/ISDEA.2012.523","DOIUrl":null,"url":null,"abstract":"A new method that the hidden nodes of the neural network are chosen by the genetic algorithm is proposed in this paper. The experimental results show that the appropriate hidden nodes can be selected by the genetic algorithm, and the results from the identification indicate that the system is quite efficient for identifying multi-objective polluted infrared spectra.","PeriodicalId":267532,"journal":{"name":"2012 Second International Conference on Intelligent System Design and Engineering Application","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Optimization for Identification System of the Simulated Infrared Spectra of Polluted Gasses Using Genetic Algorithm\",\"authors\":\"Li Meijuan, Y. Shuai, Jing Lei, Zhang Jun\",\"doi\":\"10.1109/ISDEA.2012.523\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new method that the hidden nodes of the neural network are chosen by the genetic algorithm is proposed in this paper. The experimental results show that the appropriate hidden nodes can be selected by the genetic algorithm, and the results from the identification indicate that the system is quite efficient for identifying multi-objective polluted infrared spectra.\",\"PeriodicalId\":267532,\"journal\":{\"name\":\"2012 Second International Conference on Intelligent System Design and Engineering Application\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 Second International Conference on Intelligent System Design and Engineering Application\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISDEA.2012.523\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Second International Conference on Intelligent System Design and Engineering Application","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISDEA.2012.523","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种利用遗传算法选择神经网络隐节点的新方法。实验结果表明,遗传算法可以选择合适的隐藏节点,识别结果表明,该系统对多目标污染红外光谱的识别效率很高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An Optimization for Identification System of the Simulated Infrared Spectra of Polluted Gasses Using Genetic Algorithm
A new method that the hidden nodes of the neural network are chosen by the genetic algorithm is proposed in this paper. The experimental results show that the appropriate hidden nodes can be selected by the genetic algorithm, and the results from the identification indicate that the system is quite efficient for identifying multi-objective polluted infrared spectra.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Application of DES Method to the Numerical Study of Shock Oscillations on a Supercritical Airfoil The Topological Detection Algorithm of Object Arrays in Noisy Context Based on Fuzzy Spatial Information Fusion and Prim Algorithm Robust Adaptive Fuzzy Tracking Control of Stochastic Neuron Systems A Framework for Agent-Based Collaborative Information Processing in Distributed Sensor Network Hydro Generation Scheduling Using Refined Genetic Algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1