使用Sentinel-2B图像的MaxVer和随机森林分类方法的比较

Uilmer Rodrigues Xavier da Cruz, Luciel Passos de Oliveira
{"title":"使用Sentinel-2B图像的MaxVer和随机森林分类方法的比较","authors":"Uilmer Rodrigues Xavier da Cruz, Luciel Passos de Oliveira","doi":"10.29327/248949.21.21-2","DOIUrl":null,"url":null,"abstract":"classificadores, índice Kappa de 0,77, apresentado problemas para detectar corpos d’água and Forest Abstract: The elaboration of land-use and land-cover maps using classifying algorithms is a technique that allows the continuous monitoring of natural resources on large scales and provides valuable information. There are several classifiers can be used, each with its specific premises. This study aimed to compare the performance of two different classifiers: the Maximum Likelihood Classification (MLC) and the Random Forest. The classifications were carried in southern Minas Gerais, in an area with agricultural and urban sites, using image from the Sentinel-2B. The Random Forest obtained the best performance between the two classifiers, with a Kappa index of 0.77, although it presented issues to detect smaller water bodies. Therefore, it is an algorithm indicated for a more accurate mapping of areas with different characteristics.","PeriodicalId":225680,"journal":{"name":"CARDERNOS DO LESTE","volume":"99 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparativo entre os métodos de classificação MaxVer e Random Forest utilizando imagem Sentinel-2B\",\"authors\":\"Uilmer Rodrigues Xavier da Cruz, Luciel Passos de Oliveira\",\"doi\":\"10.29327/248949.21.21-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"classificadores, índice Kappa de 0,77, apresentado problemas para detectar corpos d’água and Forest Abstract: The elaboration of land-use and land-cover maps using classifying algorithms is a technique that allows the continuous monitoring of natural resources on large scales and provides valuable information. There are several classifiers can be used, each with its specific premises. This study aimed to compare the performance of two different classifiers: the Maximum Likelihood Classification (MLC) and the Random Forest. The classifications were carried in southern Minas Gerais, in an area with agricultural and urban sites, using image from the Sentinel-2B. The Random Forest obtained the best performance between the two classifiers, with a Kappa index of 0.77, although it presented issues to detect smaller water bodies. Therefore, it is an algorithm indicated for a more accurate mapping of areas with different characteristics.\",\"PeriodicalId\":225680,\"journal\":{\"name\":\"CARDERNOS DO LESTE\",\"volume\":\"99 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CARDERNOS DO LESTE\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.29327/248949.21.21-2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CARDERNOS DO LESTE","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29327/248949.21.21-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要:利用分类算法制作土地利用和土地覆盖地图是一种可以在大尺度上连续监测自然资源并提供有价值信息的技术。可以使用几个分类器,每个分类器都有其特定的前提。本研究旨在比较两种不同分类器的性能:最大似然分类(MLC)和随机森林。这些分类是在米纳斯吉拉斯州南部一个有农业和城市遗址的地区进行的,使用的是Sentinel-2B卫星的图像。随机森林在两种分类器中获得了最好的性能,Kappa指数为0.77,尽管它存在检测较小水体的问题。因此,它是一种用于更精确地绘制不同特征区域的算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Comparativo entre os métodos de classificação MaxVer e Random Forest utilizando imagem Sentinel-2B
classificadores, índice Kappa de 0,77, apresentado problemas para detectar corpos d’água and Forest Abstract: The elaboration of land-use and land-cover maps using classifying algorithms is a technique that allows the continuous monitoring of natural resources on large scales and provides valuable information. There are several classifiers can be used, each with its specific premises. This study aimed to compare the performance of two different classifiers: the Maximum Likelihood Classification (MLC) and the Random Forest. The classifications were carried in southern Minas Gerais, in an area with agricultural and urban sites, using image from the Sentinel-2B. The Random Forest obtained the best performance between the two classifiers, with a Kappa index of 0.77, although it presented issues to detect smaller water bodies. Therefore, it is an algorithm indicated for a more accurate mapping of areas with different characteristics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A GESTÃO COMUNITÁRIA DA ÁGUA: CAMINHOS PARA PROMOÇÃO DA JUSTIÇA HÍDRICA E MITIGAÇÃO DE CONFLITOS SOCIOAMBIENTAIS DEMOCRACIA: BREVE ENSAIO IMPACTOS DA EXPANSÃO DO AGRONEGÓCIO BRASILEIRO NA CONSERVAÇÃO DOS RECURSOS NATURAIS O USO DE GEOTECNOLOGIAS NA ORGANIZAÇÃO DO ESPAÇO MODELAGEM DE MUDANÇA DO USO DA TERRA NO NOROESTE DO MATO GROSSO: POSSIBILIDADES DE ANÁLISE AMBIENTAL A PARTIR DA REVOLUÇÃO DA GEOGRAFIA QUANTITATIVA
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1