Weiming Ren, Xuedong Liu, Xuerang Hu, Xinan Luo, Xiaoyu Ji, Qingpo Xi, K. Chou, M. Ebert, E. Ma
{"title":"用于晶圆片和掩模缺陷检测的多波束技术","authors":"Weiming Ren, Xuedong Liu, Xuerang Hu, Xinan Luo, Xiaoyu Ji, Qingpo Xi, K. Chou, M. Ebert, E. Ma","doi":"10.1117/12.2536565","DOIUrl":null,"url":null,"abstract":"Pattern defects and uninvited particles (residuals) probably appear on Mask and Wafer in any manufacturing process of integrated circuits (ICs) and impact the final yield of IC chips. To ensure a high yield, defect inspection of Mask and Wafer has been broadly adopted for monitoring many processes in high volume manufacturing (HVM) and shortening development cycle-times of critical processes in R&D. In HVM optical inspection tools have played a major role, and in R&D e-beam inspection tools have been a critical role. For the 7nm technology node and beyond, minimum size killer defects are going to be invisible for optical inspection tools, and e-beam inspection tools are too slow to capture smaller killer defects in an acceptable throughput. Accordingly, enhancing e-beam inspection tools in throughput has become an issue demanding prompt attention, and one promising solution is multi-beam inspection (MBI) technology. We are developing a MBI tool, which combines our cutting edge technologies in multi-beam electron optics, sample stage, scanning strategy and computational architecture. In this paper we will introduce MBI technology and development progress of our MBI tool, and will discuss future application of MBI technology.","PeriodicalId":287066,"journal":{"name":"European Mask and Lithography Conference","volume":"394 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Multi-beam technology for defect inspection of wafer and mask\",\"authors\":\"Weiming Ren, Xuedong Liu, Xuerang Hu, Xinan Luo, Xiaoyu Ji, Qingpo Xi, K. Chou, M. Ebert, E. Ma\",\"doi\":\"10.1117/12.2536565\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Pattern defects and uninvited particles (residuals) probably appear on Mask and Wafer in any manufacturing process of integrated circuits (ICs) and impact the final yield of IC chips. To ensure a high yield, defect inspection of Mask and Wafer has been broadly adopted for monitoring many processes in high volume manufacturing (HVM) and shortening development cycle-times of critical processes in R&D. In HVM optical inspection tools have played a major role, and in R&D e-beam inspection tools have been a critical role. For the 7nm technology node and beyond, minimum size killer defects are going to be invisible for optical inspection tools, and e-beam inspection tools are too slow to capture smaller killer defects in an acceptable throughput. Accordingly, enhancing e-beam inspection tools in throughput has become an issue demanding prompt attention, and one promising solution is multi-beam inspection (MBI) technology. We are developing a MBI tool, which combines our cutting edge technologies in multi-beam electron optics, sample stage, scanning strategy and computational architecture. In this paper we will introduce MBI technology and development progress of our MBI tool, and will discuss future application of MBI technology.\",\"PeriodicalId\":287066,\"journal\":{\"name\":\"European Mask and Lithography Conference\",\"volume\":\"394 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Mask and Lithography Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2536565\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Mask and Lithography Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2536565","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Multi-beam technology for defect inspection of wafer and mask
Pattern defects and uninvited particles (residuals) probably appear on Mask and Wafer in any manufacturing process of integrated circuits (ICs) and impact the final yield of IC chips. To ensure a high yield, defect inspection of Mask and Wafer has been broadly adopted for monitoring many processes in high volume manufacturing (HVM) and shortening development cycle-times of critical processes in R&D. In HVM optical inspection tools have played a major role, and in R&D e-beam inspection tools have been a critical role. For the 7nm technology node and beyond, minimum size killer defects are going to be invisible for optical inspection tools, and e-beam inspection tools are too slow to capture smaller killer defects in an acceptable throughput. Accordingly, enhancing e-beam inspection tools in throughput has become an issue demanding prompt attention, and one promising solution is multi-beam inspection (MBI) technology. We are developing a MBI tool, which combines our cutting edge technologies in multi-beam electron optics, sample stage, scanning strategy and computational architecture. In this paper we will introduce MBI technology and development progress of our MBI tool, and will discuss future application of MBI technology.