理解人工智能引发的领域变化的框架:人工智能技术如何合法化和制度化

B. Larsen
{"title":"理解人工智能引发的领域变化的框架:人工智能技术如何合法化和制度化","authors":"B. Larsen","doi":"10.1145/3461702.3462591","DOIUrl":null,"url":null,"abstract":"Artificial intelligence (AI) systems operate in increasingly diverse areas, from healthcare to facial recognition, the stock market, autonomous vehicles, and so on. While the underlying digital infrastructure of AI systems is developing rapidly, each area of implementation is subject to different degrees and processes of legitimization. By combining elements from institutional theory and information systems-theory, this paper presents a conceptual framework to analyze and understand AI-induced field-change. The introduction of novel AI-agents into new or existing fields creates a dynamic in which algorithms (re)shape organizations and institutions while existing institutional infrastructures determine the scope and speed at which organizational change is allowed to occur. Where institutional infrastructure and governance arrangements, such as standards, rules, and regulations, still are unelaborate, the field can move fast but is also more likely to be contested. The institutional infrastructure surrounding AI-induced fields is generally little elaborated, which could be an obstacle to the broader institutionalization of AI-systems going forward.","PeriodicalId":197336,"journal":{"name":"Proceedings of the 2021 AAAI/ACM Conference on AI, Ethics, and Society","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Framework for Understanding AI-Induced Field Change: How AI Technologies are Legitimized and Institutionalized\",\"authors\":\"B. Larsen\",\"doi\":\"10.1145/3461702.3462591\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Artificial intelligence (AI) systems operate in increasingly diverse areas, from healthcare to facial recognition, the stock market, autonomous vehicles, and so on. While the underlying digital infrastructure of AI systems is developing rapidly, each area of implementation is subject to different degrees and processes of legitimization. By combining elements from institutional theory and information systems-theory, this paper presents a conceptual framework to analyze and understand AI-induced field-change. The introduction of novel AI-agents into new or existing fields creates a dynamic in which algorithms (re)shape organizations and institutions while existing institutional infrastructures determine the scope and speed at which organizational change is allowed to occur. Where institutional infrastructure and governance arrangements, such as standards, rules, and regulations, still are unelaborate, the field can move fast but is also more likely to be contested. The institutional infrastructure surrounding AI-induced fields is generally little elaborated, which could be an obstacle to the broader institutionalization of AI-systems going forward.\",\"PeriodicalId\":197336,\"journal\":{\"name\":\"Proceedings of the 2021 AAAI/ACM Conference on AI, Ethics, and Society\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2021 AAAI/ACM Conference on AI, Ethics, and Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3461702.3462591\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2021 AAAI/ACM Conference on AI, Ethics, and Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3461702.3462591","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

人工智能(AI)系统在越来越多样化的领域发挥作用,从医疗保健到面部识别、股票市场、自动驾驶汽车等等。虽然人工智能系统的底层数字基础设施正在迅速发展,但每个实施领域都受到不同程度和合法化过程的影响。本文结合制度理论和信息系统理论的要素,提出了一个分析和理解人工智能引发的场域变化的概念框架。将新颖的人工智能代理引入新的或现有的领域,创造了一种动态,其中算法(重新)塑造组织和机构,而现有的机构基础设施决定了允许发生组织变革的范围和速度。在制度基础设施和治理安排(如标准、规则和条例)仍然不完善的地方,该领域可以快速发展,但也更有可能受到竞争。围绕人工智能领域的制度基础设施通常没有得到详细阐述,这可能成为人工智能系统更广泛制度化的障碍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Framework for Understanding AI-Induced Field Change: How AI Technologies are Legitimized and Institutionalized
Artificial intelligence (AI) systems operate in increasingly diverse areas, from healthcare to facial recognition, the stock market, autonomous vehicles, and so on. While the underlying digital infrastructure of AI systems is developing rapidly, each area of implementation is subject to different degrees and processes of legitimization. By combining elements from institutional theory and information systems-theory, this paper presents a conceptual framework to analyze and understand AI-induced field-change. The introduction of novel AI-agents into new or existing fields creates a dynamic in which algorithms (re)shape organizations and institutions while existing institutional infrastructures determine the scope and speed at which organizational change is allowed to occur. Where institutional infrastructure and governance arrangements, such as standards, rules, and regulations, still are unelaborate, the field can move fast but is also more likely to be contested. The institutional infrastructure surrounding AI-induced fields is generally little elaborated, which could be an obstacle to the broader institutionalization of AI-systems going forward.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Beyond Reasonable Doubt: Improving Fairness in Budget-Constrained Decision Making using Confidence Thresholds Measuring Automated Influence: Between Empirical Evidence and Ethical Values Artificial Intelligence and the Purpose of Social Systems Ethically Compliant Planning within Moral Communities Co-design and Ethical Artificial Intelligence for Health: Myths and Misconceptions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1