{"title":"网络母题发现策略","authors":"P. Ribeiro, Fernando M A Silva, Marcus Kaiser","doi":"10.1109/e-Science.2009.20","DOIUrl":null,"url":null,"abstract":"Complex networks from domains like Biology or Sociology are present in many e-Science data sets. Dealing with networks can often form a workflow bottleneck as several related algorithms are computationally hard. One example is detecting characteristic patterns or \"network motifs\" - a problem involving subgraph mining and graph isomorphism. This paper provides a review and runtime comparison of current motif detection algorithms in the field. We present the strategies and the corresponding algorithms in pseudo-code yielding a framework for comparison. We categorize the algorithms outlining the main differences and advantages of each strategy. We finally implement all strategies in a common platform to allow a fair and objective efficiency comparison using a set of benchmark networks. We hope to inform the choice of strategy and critically discuss future improvements in motif detection.","PeriodicalId":325840,"journal":{"name":"2009 Fifth IEEE International Conference on e-Science","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"65","resultStr":"{\"title\":\"Strategies for Network Motifs Discovery\",\"authors\":\"P. Ribeiro, Fernando M A Silva, Marcus Kaiser\",\"doi\":\"10.1109/e-Science.2009.20\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Complex networks from domains like Biology or Sociology are present in many e-Science data sets. Dealing with networks can often form a workflow bottleneck as several related algorithms are computationally hard. One example is detecting characteristic patterns or \\\"network motifs\\\" - a problem involving subgraph mining and graph isomorphism. This paper provides a review and runtime comparison of current motif detection algorithms in the field. We present the strategies and the corresponding algorithms in pseudo-code yielding a framework for comparison. We categorize the algorithms outlining the main differences and advantages of each strategy. We finally implement all strategies in a common platform to allow a fair and objective efficiency comparison using a set of benchmark networks. We hope to inform the choice of strategy and critically discuss future improvements in motif detection.\",\"PeriodicalId\":325840,\"journal\":{\"name\":\"2009 Fifth IEEE International Conference on e-Science\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"65\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 Fifth IEEE International Conference on e-Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/e-Science.2009.20\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Fifth IEEE International Conference on e-Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/e-Science.2009.20","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Complex networks from domains like Biology or Sociology are present in many e-Science data sets. Dealing with networks can often form a workflow bottleneck as several related algorithms are computationally hard. One example is detecting characteristic patterns or "network motifs" - a problem involving subgraph mining and graph isomorphism. This paper provides a review and runtime comparison of current motif detection algorithms in the field. We present the strategies and the corresponding algorithms in pseudo-code yielding a framework for comparison. We categorize the algorithms outlining the main differences and advantages of each strategy. We finally implement all strategies in a common platform to allow a fair and objective efficiency comparison using a set of benchmark networks. We hope to inform the choice of strategy and critically discuss future improvements in motif detection.