{"title":"可靠的cmp片上存储器设计","authors":"Abbas BanaiyanMofrad","doi":"10.1109/SRDS.2012.60","DOIUrl":null,"url":null,"abstract":"Aggressive technology scaling in deep sub micron regime makes chips more susceptible to failures. This causes multiple realibility challenges in the design of modern chips, including manufacturing defects, wear-out, and parametric variations. With increasing area occupied by different on-chip memories in modern computing platforms such as Chip Multi-Processors (CMPs), memory reliability becomes a challenging issue. Traditional on-chip memory reliability techniques (e.g., ECC) incur significant power and performance overheads. To tackle such challenges, my research introduces several designs for fault-tolerance of both L1 and L2 cache memories in uni-core processors [1], Last-level Cache (LLC) in CMPs [3][4], and LLC in Networks-on-Chip (NoCs) [2].","PeriodicalId":447700,"journal":{"name":"2012 IEEE 31st Symposium on Reliable Distributed Systems","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Reliable On-Chip Memory Design for CMPs\",\"authors\":\"Abbas BanaiyanMofrad\",\"doi\":\"10.1109/SRDS.2012.60\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aggressive technology scaling in deep sub micron regime makes chips more susceptible to failures. This causes multiple realibility challenges in the design of modern chips, including manufacturing defects, wear-out, and parametric variations. With increasing area occupied by different on-chip memories in modern computing platforms such as Chip Multi-Processors (CMPs), memory reliability becomes a challenging issue. Traditional on-chip memory reliability techniques (e.g., ECC) incur significant power and performance overheads. To tackle such challenges, my research introduces several designs for fault-tolerance of both L1 and L2 cache memories in uni-core processors [1], Last-level Cache (LLC) in CMPs [3][4], and LLC in Networks-on-Chip (NoCs) [2].\",\"PeriodicalId\":447700,\"journal\":{\"name\":\"2012 IEEE 31st Symposium on Reliable Distributed Systems\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE 31st Symposium on Reliable Distributed Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SRDS.2012.60\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE 31st Symposium on Reliable Distributed Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SRDS.2012.60","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Aggressive technology scaling in deep sub micron regime makes chips more susceptible to failures. This causes multiple realibility challenges in the design of modern chips, including manufacturing defects, wear-out, and parametric variations. With increasing area occupied by different on-chip memories in modern computing platforms such as Chip Multi-Processors (CMPs), memory reliability becomes a challenging issue. Traditional on-chip memory reliability techniques (e.g., ECC) incur significant power and performance overheads. To tackle such challenges, my research introduces several designs for fault-tolerance of both L1 and L2 cache memories in uni-core processors [1], Last-level Cache (LLC) in CMPs [3][4], and LLC in Networks-on-Chip (NoCs) [2].