多学科学习的学科间预测

S. Takerkart, L. Ralaivola
{"title":"多学科学习的学科间预测","authors":"S. Takerkart, L. Ralaivola","doi":"10.1109/PRNI.2014.6858548","DOIUrl":null,"url":null,"abstract":"Multi-voxel pattern analysis has become an important tool for neuroimaging data analysis by allowing to predict a behavioral variable from the imaging patterns. However, standard models do not take into account the differences that can exist between subjects, so that they perform poorly in the inter-subject prediction task. We here introduce a model called Multiple Subject Learning (MSL) that is designed to effectively combine the information provided by fMRI data from several subjects; in a first stage, a weighting of single-subject kernels is learnt using multiple kernel learning to produce a classifier; then, a data shuffling procedure allows to build ensembles of such classifiers, which are then combined by a majority vote. We show that MSL outperforms other models in the inter-subject prediction task and we discuss the empirical behavior of this new model.","PeriodicalId":133286,"journal":{"name":"2014 International Workshop on Pattern Recognition in Neuroimaging","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Multiple subject learning for inter-subject prediction\",\"authors\":\"S. Takerkart, L. Ralaivola\",\"doi\":\"10.1109/PRNI.2014.6858548\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multi-voxel pattern analysis has become an important tool for neuroimaging data analysis by allowing to predict a behavioral variable from the imaging patterns. However, standard models do not take into account the differences that can exist between subjects, so that they perform poorly in the inter-subject prediction task. We here introduce a model called Multiple Subject Learning (MSL) that is designed to effectively combine the information provided by fMRI data from several subjects; in a first stage, a weighting of single-subject kernels is learnt using multiple kernel learning to produce a classifier; then, a data shuffling procedure allows to build ensembles of such classifiers, which are then combined by a majority vote. We show that MSL outperforms other models in the inter-subject prediction task and we discuss the empirical behavior of this new model.\",\"PeriodicalId\":133286,\"journal\":{\"name\":\"2014 International Workshop on Pattern Recognition in Neuroimaging\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 International Workshop on Pattern Recognition in Neuroimaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PRNI.2014.6858548\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Workshop on Pattern Recognition in Neuroimaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PRNI.2014.6858548","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

多体素模式分析已经成为神经成像数据分析的重要工具,它允许从成像模式中预测行为变量。然而,标准模型没有考虑到受试者之间可能存在的差异,因此它们在受试者间预测任务中表现不佳。我们在这里介绍了一个称为多学科学习(MSL)的模型,该模型旨在有效地结合来自多个学科的fMRI数据提供的信息;在第一阶段,使用多核学习来学习单主题核的权重以产生分类器;然后,数据洗牌过程允许构建这些分类器的集合,然后通过多数投票将其组合起来。我们证明MSL在学科间预测任务中优于其他模型,并讨论了这个新模型的经验行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multiple subject learning for inter-subject prediction
Multi-voxel pattern analysis has become an important tool for neuroimaging data analysis by allowing to predict a behavioral variable from the imaging patterns. However, standard models do not take into account the differences that can exist between subjects, so that they perform poorly in the inter-subject prediction task. We here introduce a model called Multiple Subject Learning (MSL) that is designed to effectively combine the information provided by fMRI data from several subjects; in a first stage, a weighting of single-subject kernels is learnt using multiple kernel learning to produce a classifier; then, a data shuffling procedure allows to build ensembles of such classifiers, which are then combined by a majority vote. We show that MSL outperforms other models in the inter-subject prediction task and we discuss the empirical behavior of this new model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Causal and anti-causal learning in pattern recognition for neuroimaging Gaussian mixture models improve fMRI-based image reconstruction Combining neuroanatomical and clinical data to improve individualized early diagnosis of schizophrenia in subjects at high familial risk Bayesian correlated component analysis for inference of joint EEG activation Permutation distributions of fMRI classification do not behave in accord with central limit theorem
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1