X-MIR:可解释医学图像检索

Brian Hu, Bhavan Kumar Vasu, Anthony J. Hoogs
{"title":"X-MIR:可解释医学图像检索","authors":"Brian Hu, Bhavan Kumar Vasu, Anthony J. Hoogs","doi":"10.1109/WACV51458.2022.00161","DOIUrl":null,"url":null,"abstract":"Despite significant progress in the past few years, machine learning systems are still often viewed as \"black boxes,\" which lack the ability to explain their output decisions. In high-stakes situations such as healthcare, there is a need for explainable AI (XAI) tools that can help open up this black box. In contrast to approaches which largely tackle classification problems in the medical imaging domain, we address the less-studied problem of explainable image retrieval. We test our approach on a COVID-19 chest X-ray dataset and the ISIC 2017 skin lesion dataset, showing that saliency maps help reveal the image features used by models to determine image similarity. We evaluated three different saliency algorithms, which were either occlusion-based, attention-based, or relied on a form of activation mapping. We also develop quantitative evaluation metrics that allow us to go beyond simple qualitative comparisons of the different saliency algorithms. Our results have the potential to aid clinicians when viewing medical images and addresses an urgent need for interventional tools in response to COVID-19. The source code is publicly available at: https://gitlab.kitware.com/brianhhu/x-mir.","PeriodicalId":297092,"journal":{"name":"2022 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":"{\"title\":\"X-MIR: EXplainable Medical Image Retrieval\",\"authors\":\"Brian Hu, Bhavan Kumar Vasu, Anthony J. Hoogs\",\"doi\":\"10.1109/WACV51458.2022.00161\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Despite significant progress in the past few years, machine learning systems are still often viewed as \\\"black boxes,\\\" which lack the ability to explain their output decisions. In high-stakes situations such as healthcare, there is a need for explainable AI (XAI) tools that can help open up this black box. In contrast to approaches which largely tackle classification problems in the medical imaging domain, we address the less-studied problem of explainable image retrieval. We test our approach on a COVID-19 chest X-ray dataset and the ISIC 2017 skin lesion dataset, showing that saliency maps help reveal the image features used by models to determine image similarity. We evaluated three different saliency algorithms, which were either occlusion-based, attention-based, or relied on a form of activation mapping. We also develop quantitative evaluation metrics that allow us to go beyond simple qualitative comparisons of the different saliency algorithms. Our results have the potential to aid clinicians when viewing medical images and addresses an urgent need for interventional tools in response to COVID-19. The source code is publicly available at: https://gitlab.kitware.com/brianhhu/x-mir.\",\"PeriodicalId\":297092,\"journal\":{\"name\":\"2022 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)\",\"volume\":\"46 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"28\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WACV51458.2022.00161\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WACV51458.2022.00161","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28

摘要

尽管过去几年取得了重大进展,但机器学习系统仍然经常被视为“黑匣子”,缺乏解释其输出决策的能力。在医疗保健等高风险情况下,需要可解释的AI (XAI)工具来帮助打开这个黑盒子。与主要解决医学成像领域分类问题的方法相反,我们解决了研究较少的可解释图像检索问题。我们在COVID-19胸部x射线数据集和ISIC 2017皮肤病变数据集上测试了我们的方法,结果表明显著性图有助于揭示模型用于确定图像相似性的图像特征。我们评估了三种不同的显著性算法,它们要么基于闭塞,要么基于注意力,要么依赖于一种形式的激活映射。我们还开发了定量评估指标,使我们能够超越对不同显著性算法的简单定性比较。我们的研究结果有可能帮助临床医生查看医学图像,并解决应对COVID-19对介入工具的迫切需求。源代码可以在:https://gitlab.kitware.com/brianhhu/x-mir上公开获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
X-MIR: EXplainable Medical Image Retrieval
Despite significant progress in the past few years, machine learning systems are still often viewed as "black boxes," which lack the ability to explain their output decisions. In high-stakes situations such as healthcare, there is a need for explainable AI (XAI) tools that can help open up this black box. In contrast to approaches which largely tackle classification problems in the medical imaging domain, we address the less-studied problem of explainable image retrieval. We test our approach on a COVID-19 chest X-ray dataset and the ISIC 2017 skin lesion dataset, showing that saliency maps help reveal the image features used by models to determine image similarity. We evaluated three different saliency algorithms, which were either occlusion-based, attention-based, or relied on a form of activation mapping. We also develop quantitative evaluation metrics that allow us to go beyond simple qualitative comparisons of the different saliency algorithms. Our results have the potential to aid clinicians when viewing medical images and addresses an urgent need for interventional tools in response to COVID-19. The source code is publicly available at: https://gitlab.kitware.com/brianhhu/x-mir.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Unsupervised Learning for Human Sensing Using Radio Signals AirCamRTM: Enhancing Vehicle Detection for Efficient Aerial Camera-based Road Traffic Monitoring QUALIFIER: Question-Guided Self-Attentive Multimodal Fusion Network for Audio Visual Scene-Aware Dialog Transductive Weakly-Supervised Player Detection using Soccer Broadcast Videos Inpaint2Learn: A Self-Supervised Framework for Affordance Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1