利用单幅图像的类别信息进行目标姿态估计

Shunsuke Shimizu, H. Koyasu, Yoshinori Kobayashi, Y. Kuno
{"title":"利用单幅图像的类别信息进行目标姿态估计","authors":"Shunsuke Shimizu, H. Koyasu, Yoshinori Kobayashi, Y. Kuno","doi":"10.1109/FCV.2015.7103728","DOIUrl":null,"url":null,"abstract":"3D object pose estimation is one of the most important challenges in the field of computer vision. A huge amount of image resources such as images on the web or photos taken before can be utilized if the system can estimate the 3D pose from a single image. On the other hand, the object's category and position on the image can be estimated by using state of the techniques in the general object recognition. We propose a method for 3D pose estimation from a single image on the basis of the known object category and position. We employ Regression Forests as the machine learning algorithm and HOG features as the input vectors. The regression function is created based on HOG features which express the differences in shapes depending on the viewing directions and corresponding poses. We evaluate the accuracy of pose estimation by using multiple objects with different categories.","PeriodicalId":424974,"journal":{"name":"2015 21st Korea-Japan Joint Workshop on Frontiers of Computer Vision (FCV)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Object pose estimation using category information from a single image\",\"authors\":\"Shunsuke Shimizu, H. Koyasu, Yoshinori Kobayashi, Y. Kuno\",\"doi\":\"10.1109/FCV.2015.7103728\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"3D object pose estimation is one of the most important challenges in the field of computer vision. A huge amount of image resources such as images on the web or photos taken before can be utilized if the system can estimate the 3D pose from a single image. On the other hand, the object's category and position on the image can be estimated by using state of the techniques in the general object recognition. We propose a method for 3D pose estimation from a single image on the basis of the known object category and position. We employ Regression Forests as the machine learning algorithm and HOG features as the input vectors. The regression function is created based on HOG features which express the differences in shapes depending on the viewing directions and corresponding poses. We evaluate the accuracy of pose estimation by using multiple objects with different categories.\",\"PeriodicalId\":424974,\"journal\":{\"name\":\"2015 21st Korea-Japan Joint Workshop on Frontiers of Computer Vision (FCV)\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 21st Korea-Japan Joint Workshop on Frontiers of Computer Vision (FCV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FCV.2015.7103728\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 21st Korea-Japan Joint Workshop on Frontiers of Computer Vision (FCV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FCV.2015.7103728","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

三维物体姿态估计是计算机视觉领域的重要课题之一。如果系统可以从单张图像中估计出3D姿态,则可以利用大量的图像资源,例如网络上的图像或之前拍摄的照片。另一方面,利用一般物体识别技术的状态,可以估计出物体在图像上的类别和位置。提出了一种基于已知目标类别和位置的单幅图像的三维姿态估计方法。我们采用回归森林作为机器学习算法,HOG特征作为输入向量。回归函数是基于HOG特征创建的,HOG特征表达了不同的观察方向和相应的姿态的形状差异。我们通过使用不同类别的多个目标来评估姿态估计的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Object pose estimation using category information from a single image
3D object pose estimation is one of the most important challenges in the field of computer vision. A huge amount of image resources such as images on the web or photos taken before can be utilized if the system can estimate the 3D pose from a single image. On the other hand, the object's category and position on the image can be estimated by using state of the techniques in the general object recognition. We propose a method for 3D pose estimation from a single image on the basis of the known object category and position. We employ Regression Forests as the machine learning algorithm and HOG features as the input vectors. The regression function is created based on HOG features which express the differences in shapes depending on the viewing directions and corresponding poses. We evaluate the accuracy of pose estimation by using multiple objects with different categories.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Object classification using CNN for video traffic detection system Study on performance of MPEG-7 visual descriptors for deformable object retrieval Development of deep learning-based facial expression recognition system Robust detection of mosaic masking region A system architecture for real time traffic monitoring in foggy video
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1