基于距离特征的集成分类器入侵检测系统的设计

M. Aravind, V. Kalaiselvi
{"title":"基于距离特征的集成分类器入侵检测系统的设计","authors":"M. Aravind, V. Kalaiselvi","doi":"10.1109/ICSCN.2017.8085661","DOIUrl":null,"url":null,"abstract":"This paper focuses on designing an Intrusion Detection System(IDS), which detects the family of attack in a dataset. An IDS detects various types of malicious traffic and computer usage which cannot be detected by a conventional firewall. In this proposed work, the data is extracted from UNSW_NB15 dataset. To identify the data cluster centers, the k means algorithm is used. A new and one dimensional distance based feature is used to represent each data sample. Following this, an ensemble classifier is used to classify the data. Our algorithm would classify five families of attack viz., Normal, Probe, DOS, U2R and R2L. For each and every classifier output, Training state, Performance, Error histogram, Regression Fit are plotted.","PeriodicalId":383458,"journal":{"name":"2017 Fourth International Conference on Signal Processing, Communication and Networking (ICSCN)","volume":"104 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Design of an intrusion detection system based on distance feature using ensemble classifier\",\"authors\":\"M. Aravind, V. Kalaiselvi\",\"doi\":\"10.1109/ICSCN.2017.8085661\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper focuses on designing an Intrusion Detection System(IDS), which detects the family of attack in a dataset. An IDS detects various types of malicious traffic and computer usage which cannot be detected by a conventional firewall. In this proposed work, the data is extracted from UNSW_NB15 dataset. To identify the data cluster centers, the k means algorithm is used. A new and one dimensional distance based feature is used to represent each data sample. Following this, an ensemble classifier is used to classify the data. Our algorithm would classify five families of attack viz., Normal, Probe, DOS, U2R and R2L. For each and every classifier output, Training state, Performance, Error histogram, Regression Fit are plotted.\",\"PeriodicalId\":383458,\"journal\":{\"name\":\"2017 Fourth International Conference on Signal Processing, Communication and Networking (ICSCN)\",\"volume\":\"104 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 Fourth International Conference on Signal Processing, Communication and Networking (ICSCN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSCN.2017.8085661\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Fourth International Conference on Signal Processing, Communication and Networking (ICSCN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSCN.2017.8085661","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

本文重点设计了一个入侵检测系统(IDS),该系统可以检测数据集中的攻击族。IDS检测各种类型的恶意流量和计算机使用情况,这是传统防火墙无法检测到的。在本文中,数据提取自UNSW_NB15数据集。为了识别数据簇中心,使用k均值算法。使用一个新的一维距离特征来表示每个数据样本。接下来,使用集成分类器对数据进行分类。我们的算法将分为五类攻击,即Normal, Probe, DOS, U2R和R2L。对于每个分类器输出,绘制训练状态,性能,误差直方图,回归拟合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Design of an intrusion detection system based on distance feature using ensemble classifier
This paper focuses on designing an Intrusion Detection System(IDS), which detects the family of attack in a dataset. An IDS detects various types of malicious traffic and computer usage which cannot be detected by a conventional firewall. In this proposed work, the data is extracted from UNSW_NB15 dataset. To identify the data cluster centers, the k means algorithm is used. A new and one dimensional distance based feature is used to represent each data sample. Following this, an ensemble classifier is used to classify the data. Our algorithm would classify five families of attack viz., Normal, Probe, DOS, U2R and R2L. For each and every classifier output, Training state, Performance, Error histogram, Regression Fit are plotted.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Design and implementation of programmable read only memory using reversible decoder on FPGA Literature survey on traffic-based server load balancing using SDN and open flow A survey on ARP cache poisoning and techniques for detection and mitigation Machine condition monitoring using audio signature analysis Robust audio watermarking for monitoring and information embedding
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1