k -均值-弹性反向传播神经网络预测贫困水平

B. Poerwanto
{"title":"k -均值-弹性反向传播神经网络预测贫困水平","authors":"B. Poerwanto","doi":"10.30812/varian.v6i2.2756","DOIUrl":null,"url":null,"abstract":"In solving economic problems, the government has implemented several development policies. However, this policy is considered to be too centered on big cities. So, through this research it is hoped that it can provide an overview related to regional groups that fall into the poorer category so that the government can also provide accelerated development policies that are oriented towards improving the economy of residents in the area. This study aims to determine the results of classifying district/city poverty levels in Indonesia as a basis for classification for predictions and to classify district/city poverty levels based on influencing factors. The method used in this study is K-Means Clustering using the poverty depth index and poverty severity index variables, then proceed with using the Backpropagation Neural Network (BNN) algorithm using the GRDP, per capita expenditure, human development index, and mean years of schooling. The results obtained using the K-Means algorithm are that there are 42 districts/cities that belong to cluster 1 where this region has a poverty index depth and severity index value that is higher than the 472 districts/cities in cluster 2. Furthermore, the cluster results are used as response variables for classification with BNN. The accuracy of the model obtained is very high, which is equal to 98.06, so the model is very feasible to be used as a poverty rate prediction model based on the variables used.","PeriodicalId":188119,"journal":{"name":"Jurnal Varian","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"K-Means – Resilient Backpropagation Neural Network in Predicting Poverty Levels\",\"authors\":\"B. Poerwanto\",\"doi\":\"10.30812/varian.v6i2.2756\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In solving economic problems, the government has implemented several development policies. However, this policy is considered to be too centered on big cities. So, through this research it is hoped that it can provide an overview related to regional groups that fall into the poorer category so that the government can also provide accelerated development policies that are oriented towards improving the economy of residents in the area. This study aims to determine the results of classifying district/city poverty levels in Indonesia as a basis for classification for predictions and to classify district/city poverty levels based on influencing factors. The method used in this study is K-Means Clustering using the poverty depth index and poverty severity index variables, then proceed with using the Backpropagation Neural Network (BNN) algorithm using the GRDP, per capita expenditure, human development index, and mean years of schooling. The results obtained using the K-Means algorithm are that there are 42 districts/cities that belong to cluster 1 where this region has a poverty index depth and severity index value that is higher than the 472 districts/cities in cluster 2. Furthermore, the cluster results are used as response variables for classification with BNN. The accuracy of the model obtained is very high, which is equal to 98.06, so the model is very feasible to be used as a poverty rate prediction model based on the variables used.\",\"PeriodicalId\":188119,\"journal\":{\"name\":\"Jurnal Varian\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jurnal Varian\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30812/varian.v6i2.2756\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Varian","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30812/varian.v6i2.2756","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为了解决经济问题,政府实施了几项发展政策。然而,这项政策被认为过于以大城市为中心。因此,通过这项研究,希望能够提供一个与属于较贫困类别的区域群体相关的概述,以便政府也可以提供加速发展的政策,以改善该地区居民的经济。本研究旨在确定印度尼西亚地区/城市贫困水平分类的结果,作为分类预测的基础,并根据影响因素对地区/城市贫困水平进行分类。本研究使用的方法是K-Means聚类,使用贫困深度指数和贫困严重程度指数变量,然后使用反向传播神经网络(BNN)算法,使用GRDP、人均支出、人类发展指数和平均受教育年限。使用K-Means算法得到的结果是,属于聚类1的42个地区/城市的贫困指数深度和严重程度指数值高于聚类2的472个地区/城市。此外,将聚类结果作为响应变量,使用BNN进行分类。所得模型的准确率非常高,为98.06,因此根据所使用的变量,该模型作为贫困率预测模型是非常可行的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
K-Means – Resilient Backpropagation Neural Network in Predicting Poverty Levels
In solving economic problems, the government has implemented several development policies. However, this policy is considered to be too centered on big cities. So, through this research it is hoped that it can provide an overview related to regional groups that fall into the poorer category so that the government can also provide accelerated development policies that are oriented towards improving the economy of residents in the area. This study aims to determine the results of classifying district/city poverty levels in Indonesia as a basis for classification for predictions and to classify district/city poverty levels based on influencing factors. The method used in this study is K-Means Clustering using the poverty depth index and poverty severity index variables, then proceed with using the Backpropagation Neural Network (BNN) algorithm using the GRDP, per capita expenditure, human development index, and mean years of schooling. The results obtained using the K-Means algorithm are that there are 42 districts/cities that belong to cluster 1 where this region has a poverty index depth and severity index value that is higher than the 472 districts/cities in cluster 2. Furthermore, the cluster results are used as response variables for classification with BNN. The accuracy of the model obtained is very high, which is equal to 98.06, so the model is very feasible to be used as a poverty rate prediction model based on the variables used.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Application of Principal Component Regression in Analyzing Factors Affecting Human Development Index Impact of SST Anomalies on Coral Reefs Damage Based on Copula Analysis The NADI Mathematical Model on the Danger Level of the Bili-Bili Dam Regression Model of Land Area and Amount of Production to the Selling Price of Corn K-Means – Resilient Backpropagation Neural Network in Predicting Poverty Levels
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1