基于强化学习的智能微电网QoS和网络可靠性性能改进

Niharika Singh, I. Elamvazuthi, P. Nallagownden, N. Badruddin, Firas Ousta, A. Jangra
{"title":"基于强化学习的智能微电网QoS和网络可靠性性能改进","authors":"Niharika Singh, I. Elamvazuthi, P. Nallagownden, N. Badruddin, Firas Ousta, A. Jangra","doi":"10.1109/ICIAS49414.2021.9642596","DOIUrl":null,"url":null,"abstract":"A Smart Microgrid consists of physical and communication layered networks. It provides communication services to each connected component and resource through multi-agent system. This paper proposes a reinforcement learning based methodology, Q-reinforcement Learning based Multi-agent based Bellmanford Routing (QRL-MABR), using multiple agents communicating over the microgrid network. It strengthens the decision-making core of the microgrid by improving Quality of service and network reliability of the smart microgrid. The performance analysis of the algorithm is tested over small-scale IEEE microgrid models i.e. IEEE 9 and IEEE 14. The work is tested and compared with four routing oriented decision-making algorithms, Open shortest path first (OSPF), Optimized link state routing (OLSR), Routing information protocol (RIP) and Multi-agent based Bellmanford routing (MABR). The results validate the productivity and learning capabilities of the proposed QRL-MABR algorithm.","PeriodicalId":212635,"journal":{"name":"2020 8th International Conference on Intelligent and Advanced Systems (ICIAS)","volume":"72 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Smart Microgrid QoS and Network Reliability Performance Improvement using Reinforcement Learning\",\"authors\":\"Niharika Singh, I. Elamvazuthi, P. Nallagownden, N. Badruddin, Firas Ousta, A. Jangra\",\"doi\":\"10.1109/ICIAS49414.2021.9642596\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A Smart Microgrid consists of physical and communication layered networks. It provides communication services to each connected component and resource through multi-agent system. This paper proposes a reinforcement learning based methodology, Q-reinforcement Learning based Multi-agent based Bellmanford Routing (QRL-MABR), using multiple agents communicating over the microgrid network. It strengthens the decision-making core of the microgrid by improving Quality of service and network reliability of the smart microgrid. The performance analysis of the algorithm is tested over small-scale IEEE microgrid models i.e. IEEE 9 and IEEE 14. The work is tested and compared with four routing oriented decision-making algorithms, Open shortest path first (OSPF), Optimized link state routing (OLSR), Routing information protocol (RIP) and Multi-agent based Bellmanford routing (MABR). The results validate the productivity and learning capabilities of the proposed QRL-MABR algorithm.\",\"PeriodicalId\":212635,\"journal\":{\"name\":\"2020 8th International Conference on Intelligent and Advanced Systems (ICIAS)\",\"volume\":\"72 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 8th International Conference on Intelligent and Advanced Systems (ICIAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIAS49414.2021.9642596\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 8th International Conference on Intelligent and Advanced Systems (ICIAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIAS49414.2021.9642596","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

智能微电网由物理层和通信层网络组成。它通过多代理系统为每个被连接的组件和资源提供通信服务。本文提出了一种基于强化学习的方法,即基于q -强化学习的基于多智能体的Bellmanford路由(QRL-MABR),该方法使用多个智能体在微电网上通信。通过提高智能微电网的服务质量和网络可靠性,强化微电网的决策核心。在小规模的IEEE微电网模型(ieee9和ieee14)上测试了该算法的性能分析。并与开放最短路径优先(OSPF)、优化链路状态路由(OLSR)、路由信息协议(RIP)和基于多智能体的Bellmanford路由(MABR)四种面向路由的决策算法进行了测试和比较。结果验证了所提出的QRL-MABR算法的生产率和学习能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Smart Microgrid QoS and Network Reliability Performance Improvement using Reinforcement Learning
A Smart Microgrid consists of physical and communication layered networks. It provides communication services to each connected component and resource through multi-agent system. This paper proposes a reinforcement learning based methodology, Q-reinforcement Learning based Multi-agent based Bellmanford Routing (QRL-MABR), using multiple agents communicating over the microgrid network. It strengthens the decision-making core of the microgrid by improving Quality of service and network reliability of the smart microgrid. The performance analysis of the algorithm is tested over small-scale IEEE microgrid models i.e. IEEE 9 and IEEE 14. The work is tested and compared with four routing oriented decision-making algorithms, Open shortest path first (OSPF), Optimized link state routing (OLSR), Routing information protocol (RIP) and Multi-agent based Bellmanford routing (MABR). The results validate the productivity and learning capabilities of the proposed QRL-MABR algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Prospects and Techniques of Regenerative Current Breaking in DC Circuit Breaker Topology Fractional Stochastic Gradient Descent Based Learning Algorithm For Multi-layer Perceptron Neural Networks Domestic Electrical Energy Monitoring and Alerting Using SCADA and IoT Stochastic Approach for the Identification of Retinopathy of Prematurity Fault Classification and Location in Three-Phase Transmission Lines Using Wavelet-based Machine Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1