{"title":"基于幂函数的可操作行为规则的观察加权挖掘方法","authors":"Peng Su, W. Mao","doi":"10.1109/ISI.2015.7165970","DOIUrl":null,"url":null,"abstract":"Among the most important and distinctive actionable knowledge are actionable behavioral rules that can directly and explicitly suggest specific actions to take to influence (restrain or encourage) the behavior in the users' best interest. The problem of mining such rules is a search problem in a framework of support and expected utility. The previous definition of a rule's support assumes that each instance which supports a rule has the uniform contribution to the support. However, this assumption is usually violated in practice to some extent, and thus will hinder the performance of algorithms for mining such rules. In this paper, to handle this problem, a power-function-based observation-weighting model for support and corresponding mining algorithm are proposed. The experimental results strongly suggest the validity and the superiority of our approach.","PeriodicalId":292352,"journal":{"name":"2015 IEEE International Conference on Intelligence and Security Informatics (ISI)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Power-function-based observation-weighting method for mining actionable behavioral rules\",\"authors\":\"Peng Su, W. Mao\",\"doi\":\"10.1109/ISI.2015.7165970\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Among the most important and distinctive actionable knowledge are actionable behavioral rules that can directly and explicitly suggest specific actions to take to influence (restrain or encourage) the behavior in the users' best interest. The problem of mining such rules is a search problem in a framework of support and expected utility. The previous definition of a rule's support assumes that each instance which supports a rule has the uniform contribution to the support. However, this assumption is usually violated in practice to some extent, and thus will hinder the performance of algorithms for mining such rules. In this paper, to handle this problem, a power-function-based observation-weighting model for support and corresponding mining algorithm are proposed. The experimental results strongly suggest the validity and the superiority of our approach.\",\"PeriodicalId\":292352,\"journal\":{\"name\":\"2015 IEEE International Conference on Intelligence and Security Informatics (ISI)\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Conference on Intelligence and Security Informatics (ISI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISI.2015.7165970\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Intelligence and Security Informatics (ISI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISI.2015.7165970","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Power-function-based observation-weighting method for mining actionable behavioral rules
Among the most important and distinctive actionable knowledge are actionable behavioral rules that can directly and explicitly suggest specific actions to take to influence (restrain or encourage) the behavior in the users' best interest. The problem of mining such rules is a search problem in a framework of support and expected utility. The previous definition of a rule's support assumes that each instance which supports a rule has the uniform contribution to the support. However, this assumption is usually violated in practice to some extent, and thus will hinder the performance of algorithms for mining such rules. In this paper, to handle this problem, a power-function-based observation-weighting model for support and corresponding mining algorithm are proposed. The experimental results strongly suggest the validity and the superiority of our approach.