基于人体部位空间协方差区域的人物再识别

Sławomir Bąk, E. Corvée, F. Brémond, M. Thonnat
{"title":"基于人体部位空间协方差区域的人物再识别","authors":"Sławomir Bąk, E. Corvée, F. Brémond, M. Thonnat","doi":"10.1109/AVSS.2010.34","DOIUrl":null,"url":null,"abstract":"In many surveillance systems there is a requirement todetermine whether a given person of interest has alreadybeen observed over a network of cameras. This is the personre-identification problem. The human appearance obtainedin one camera is usually different from the ones obtained inanother camera. In order to re-identify people the humansignature should handle difference in illumination, pose andcamera parameters. We propose a new appearance modelbased on spatial covariance regions extracted from humanbody parts. The new spatial pyramid scheme is applied tocapture the correlation between human body parts in orderto obtain a discriminative human signature. The humanbody parts are automatically detected using Histograms ofOriented Gradients (HOG). The method is evaluated usingbenchmark video sequences from i-LIDS Multiple-CameraTracking Scenario data set. The re-identification performanceis presented using the cumulative matching characteristic(CMC) curve. Finally, we show that the proposedapproach outperforms state of the art methods.","PeriodicalId":415758,"journal":{"name":"2010 7th IEEE International Conference on Advanced Video and Signal Based Surveillance","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"273","resultStr":"{\"title\":\"Person Re-identification Using Spatial Covariance Regions of Human Body Parts\",\"authors\":\"Sławomir Bąk, E. Corvée, F. Brémond, M. Thonnat\",\"doi\":\"10.1109/AVSS.2010.34\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In many surveillance systems there is a requirement todetermine whether a given person of interest has alreadybeen observed over a network of cameras. This is the personre-identification problem. The human appearance obtainedin one camera is usually different from the ones obtained inanother camera. In order to re-identify people the humansignature should handle difference in illumination, pose andcamera parameters. We propose a new appearance modelbased on spatial covariance regions extracted from humanbody parts. The new spatial pyramid scheme is applied tocapture the correlation between human body parts in orderto obtain a discriminative human signature. The humanbody parts are automatically detected using Histograms ofOriented Gradients (HOG). The method is evaluated usingbenchmark video sequences from i-LIDS Multiple-CameraTracking Scenario data set. The re-identification performanceis presented using the cumulative matching characteristic(CMC) curve. Finally, we show that the proposedapproach outperforms state of the art methods.\",\"PeriodicalId\":415758,\"journal\":{\"name\":\"2010 7th IEEE International Conference on Advanced Video and Signal Based Surveillance\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"273\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 7th IEEE International Conference on Advanced Video and Signal Based Surveillance\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AVSS.2010.34\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 7th IEEE International Conference on Advanced Video and Signal Based Surveillance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AVSS.2010.34","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 273

摘要

在许多监视系统中,需要确定是否已经通过摄像机网络观察到某个特定的感兴趣的人。这就是个人识别问题。在一个摄像机中获得的人的外观通常与在另一个摄像机中获得的不同。为了重新识别人,人的签名应该处理光照、姿势和相机参数的差异。提出了一种基于人体部位空间协方差区域提取的外观模型。利用新的空间金字塔图来捕捉人体部位之间的相关性,从而获得具有区别性的人体特征。使用直方图定向梯度(HOG)自动检测人体部位。使用i-LIDS多摄像机跟踪场景数据集的基准视频序列对该方法进行了评估。利用累积匹配特性(CMC)曲线描述了该方法的再识别性能。最后,我们证明了所提出的方法优于最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Person Re-identification Using Spatial Covariance Regions of Human Body Parts
In many surveillance systems there is a requirement todetermine whether a given person of interest has alreadybeen observed over a network of cameras. This is the personre-identification problem. The human appearance obtainedin one camera is usually different from the ones obtained inanother camera. In order to re-identify people the humansignature should handle difference in illumination, pose andcamera parameters. We propose a new appearance modelbased on spatial covariance regions extracted from humanbody parts. The new spatial pyramid scheme is applied tocapture the correlation between human body parts in orderto obtain a discriminative human signature. The humanbody parts are automatically detected using Histograms ofOriented Gradients (HOG). The method is evaluated usingbenchmark video sequences from i-LIDS Multiple-CameraTracking Scenario data set. The re-identification performanceis presented using the cumulative matching characteristic(CMC) curve. Finally, we show that the proposedapproach outperforms state of the art methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Statistical Background Modeling: An Edge Segment Based Moving Object Detection Approach Who, what, when, where, why and how in video analysis: an application centric view Trajectory Based Activity Discovery Local Abnormality Detection in Video Using Subspace Learning Functionality Delegation in Distributed Surveillance Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1