{"title":"可控近场静电纺丝的数学分析","authors":"Jie Chen, Zhushuai Shao, Changhai Ru, Zhan Yang","doi":"10.1109/3M-NANO.2013.6737415","DOIUrl":null,"url":null,"abstract":"Near-field electrospinning (NFES) is a novel method possessing higher controllability than conventional far-field electrospinning (FFES). But due to the lack of directions of theoretical model, precise deposition of nanofibers could only accomplished by experience. In this work, expressions for jet cross-sectional radius and jet velocity in NFES were derived in terms of axial position and initial jet acceleration. Based on nonlinear curve fitting method in MATLAB, an approximation for initial jet acceleration was acquired. With this model, it was able to accurately predict the diameter and velocity of nanofibers in NFES. Additionally, the movement speed of the workbench can be regulated by mathematical model rather than experience. So the model proposed in this paper had important guiding significance to precise deposition of nanofibers.","PeriodicalId":120368,"journal":{"name":"2013 International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mathematical analysis for controllable near-field electrospinning\",\"authors\":\"Jie Chen, Zhushuai Shao, Changhai Ru, Zhan Yang\",\"doi\":\"10.1109/3M-NANO.2013.6737415\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Near-field electrospinning (NFES) is a novel method possessing higher controllability than conventional far-field electrospinning (FFES). But due to the lack of directions of theoretical model, precise deposition of nanofibers could only accomplished by experience. In this work, expressions for jet cross-sectional radius and jet velocity in NFES were derived in terms of axial position and initial jet acceleration. Based on nonlinear curve fitting method in MATLAB, an approximation for initial jet acceleration was acquired. With this model, it was able to accurately predict the diameter and velocity of nanofibers in NFES. Additionally, the movement speed of the workbench can be regulated by mathematical model rather than experience. So the model proposed in this paper had important guiding significance to precise deposition of nanofibers.\",\"PeriodicalId\":120368,\"journal\":{\"name\":\"2013 International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/3M-NANO.2013.6737415\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/3M-NANO.2013.6737415","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Mathematical analysis for controllable near-field electrospinning
Near-field electrospinning (NFES) is a novel method possessing higher controllability than conventional far-field electrospinning (FFES). But due to the lack of directions of theoretical model, precise deposition of nanofibers could only accomplished by experience. In this work, expressions for jet cross-sectional radius and jet velocity in NFES were derived in terms of axial position and initial jet acceleration. Based on nonlinear curve fitting method in MATLAB, an approximation for initial jet acceleration was acquired. With this model, it was able to accurately predict the diameter and velocity of nanofibers in NFES. Additionally, the movement speed of the workbench can be regulated by mathematical model rather than experience. So the model proposed in this paper had important guiding significance to precise deposition of nanofibers.