{"title":"可分解系统的主动学习","authors":"Omar al Duhaiby, J. F. Groote","doi":"10.1145/3372020.3391560","DOIUrl":null,"url":null,"abstract":"Active automata learning is a technique of querying black box systems and modelling their behaviour. In this paper, we aim to apply active learning in parts. We formalise the conditions on systems—with a decomposable set of actions—that make learning in parts possible. The systems are themselves decomposable through nonintersecting subsets of actions. Learning these subsystems/components requires less time and resources. We prove that the technique works for both two components as well as an arbitrary number of components. We illustrate the usefulness of this technique through a classical example and through a real example from the industry.CCS CONCEPTS• Computing methodologies $\\rightarrow$Model development and analysis;• Theory of computation $\\rightarrow$Formal languages and automata theory; Active learning;• Software and its engineering $\\rightarrow$ Model-driven software engineering.","PeriodicalId":448369,"journal":{"name":"2020 IEEE/ACM 8th International Conference on Formal Methods in Software Engineering (FormaliSE)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Active Learning of Decomposable Systems\",\"authors\":\"Omar al Duhaiby, J. F. Groote\",\"doi\":\"10.1145/3372020.3391560\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Active automata learning is a technique of querying black box systems and modelling their behaviour. In this paper, we aim to apply active learning in parts. We formalise the conditions on systems—with a decomposable set of actions—that make learning in parts possible. The systems are themselves decomposable through nonintersecting subsets of actions. Learning these subsystems/components requires less time and resources. We prove that the technique works for both two components as well as an arbitrary number of components. We illustrate the usefulness of this technique through a classical example and through a real example from the industry.CCS CONCEPTS• Computing methodologies $\\\\rightarrow$Model development and analysis;• Theory of computation $\\\\rightarrow$Formal languages and automata theory; Active learning;• Software and its engineering $\\\\rightarrow$ Model-driven software engineering.\",\"PeriodicalId\":448369,\"journal\":{\"name\":\"2020 IEEE/ACM 8th International Conference on Formal Methods in Software Engineering (FormaliSE)\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE/ACM 8th International Conference on Formal Methods in Software Engineering (FormaliSE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3372020.3391560\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE/ACM 8th International Conference on Formal Methods in Software Engineering (FormaliSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3372020.3391560","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Active automata learning is a technique of querying black box systems and modelling their behaviour. In this paper, we aim to apply active learning in parts. We formalise the conditions on systems—with a decomposable set of actions—that make learning in parts possible. The systems are themselves decomposable through nonintersecting subsets of actions. Learning these subsystems/components requires less time and resources. We prove that the technique works for both two components as well as an arbitrary number of components. We illustrate the usefulness of this technique through a classical example and through a real example from the industry.CCS CONCEPTS• Computing methodologies $\rightarrow$Model development and analysis;• Theory of computation $\rightarrow$Formal languages and automata theory; Active learning;• Software and its engineering $\rightarrow$ Model-driven software engineering.