将BERT嵌入用于军事领域特定内容的文本关联

Arvid Kok, Giavid Valiyev, Michael Street
{"title":"将BERT嵌入用于军事领域特定内容的文本关联","authors":"Arvid Kok, Giavid Valiyev, Michael Street","doi":"10.1109/ICMCIS52405.2021.9486408","DOIUrl":null,"url":null,"abstract":"This paper addresses the problem of how to achieve similarity search for text sequence correlation with a proper semantic foundation. Natural Language Processing (NLP) is fundamental for answering Community of Interest (COI) associated questions and this paper presents and compares three methods for similarity search. The methods are using Google introduced transformer models, BERT being the most well known. Combining techniques for pre-processing data, enhancing BERT and post-BERT adjustments are tested in an experimental setting and results are presented in this paper.","PeriodicalId":246290,"journal":{"name":"2021 International Conference on Military Communication and Information Systems (ICMCIS)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Adapting BERT Embeddings for Text Correlation of Military Domain Specific Content\",\"authors\":\"Arvid Kok, Giavid Valiyev, Michael Street\",\"doi\":\"10.1109/ICMCIS52405.2021.9486408\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper addresses the problem of how to achieve similarity search for text sequence correlation with a proper semantic foundation. Natural Language Processing (NLP) is fundamental for answering Community of Interest (COI) associated questions and this paper presents and compares three methods for similarity search. The methods are using Google introduced transformer models, BERT being the most well known. Combining techniques for pre-processing data, enhancing BERT and post-BERT adjustments are tested in an experimental setting and results are presented in this paper.\",\"PeriodicalId\":246290,\"journal\":{\"name\":\"2021 International Conference on Military Communication and Information Systems (ICMCIS)\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-05-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 International Conference on Military Communication and Information Systems (ICMCIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMCIS52405.2021.9486408\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Military Communication and Information Systems (ICMCIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMCIS52405.2021.9486408","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文研究了如何在适当的语义基础上实现文本序列关联的相似度搜索。自然语言处理(NLP)是回答感兴趣社区(COI)相关问题的基础,本文提出并比较了三种相似度搜索方法。这些方法使用谷歌引入的变压器模型,BERT是最著名的。结合预处理数据技术,增强BERT和后BERT调整在实验环境中进行了测试,并在本文中给出了结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Adapting BERT Embeddings for Text Correlation of Military Domain Specific Content
This paper addresses the problem of how to achieve similarity search for text sequence correlation with a proper semantic foundation. Natural Language Processing (NLP) is fundamental for answering Community of Interest (COI) associated questions and this paper presents and compares three methods for similarity search. The methods are using Google introduced transformer models, BERT being the most well known. Combining techniques for pre-processing data, enhancing BERT and post-BERT adjustments are tested in an experimental setting and results are presented in this paper.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Novel Multi-Parameter based Rate-Matching of Polar Codes A Multimodal Mixed Reality Data Exploration Framework for Tactical Decision Making Mobile cyber defense agents for low throughput DNS-based data exfiltration detection in military networks CNN-based processing of radio frequency signals for augmenting acoustic source localization and enhancement in UAV security applications Cyber Intrusion Detection using Natural Language Processing on Windows Event Logs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1