{"title":"基于元启发式/人工智能技术的多区域电力系统负荷频率控制","authors":"Junaid Hussain Lanker, Ravi Bhushan, Neeraj Gupta","doi":"10.1109/ICICCSP53532.2022.9862473","DOIUrl":null,"url":null,"abstract":"This paper presents multi area load frequency control (LFC) using artificial intelligence techniques in a power system comprising of non-reheat thermal power units for a three area interconnected power system. In this proposed scheme, fuzzy logic, Artificial Neural Network and Genetic Algorithm technique has been used to tune the classical PID controller for each area. Step load disturbance has been applied to assess its consequence on the dynamic performance of power system. The results are compared and appreciable change i.e minimum overshoot/undershoot, less settling time and a better response is achieved. For simulation of the controllers MATLAB simulation software is used.","PeriodicalId":326163,"journal":{"name":"2022 International Conference on Intelligent Controller and Computing for Smart Power (ICICCSP)","volume":"109 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Load Frequency Control of Multi Area Power System Using Meta-heuristic/Artificial Intelligence Techniques\",\"authors\":\"Junaid Hussain Lanker, Ravi Bhushan, Neeraj Gupta\",\"doi\":\"10.1109/ICICCSP53532.2022.9862473\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents multi area load frequency control (LFC) using artificial intelligence techniques in a power system comprising of non-reheat thermal power units for a three area interconnected power system. In this proposed scheme, fuzzy logic, Artificial Neural Network and Genetic Algorithm technique has been used to tune the classical PID controller for each area. Step load disturbance has been applied to assess its consequence on the dynamic performance of power system. The results are compared and appreciable change i.e minimum overshoot/undershoot, less settling time and a better response is achieved. For simulation of the controllers MATLAB simulation software is used.\",\"PeriodicalId\":326163,\"journal\":{\"name\":\"2022 International Conference on Intelligent Controller and Computing for Smart Power (ICICCSP)\",\"volume\":\"109 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 International Conference on Intelligent Controller and Computing for Smart Power (ICICCSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICICCSP53532.2022.9862473\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Intelligent Controller and Computing for Smart Power (ICICCSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICCSP53532.2022.9862473","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Load Frequency Control of Multi Area Power System Using Meta-heuristic/Artificial Intelligence Techniques
This paper presents multi area load frequency control (LFC) using artificial intelligence techniques in a power system comprising of non-reheat thermal power units for a three area interconnected power system. In this proposed scheme, fuzzy logic, Artificial Neural Network and Genetic Algorithm technique has been used to tune the classical PID controller for each area. Step load disturbance has been applied to assess its consequence on the dynamic performance of power system. The results are compared and appreciable change i.e minimum overshoot/undershoot, less settling time and a better response is achieved. For simulation of the controllers MATLAB simulation software is used.