向量场的Delaunay化简算法

T. Dey, J. Levine, R. Wenger
{"title":"向量场的Delaunay化简算法","authors":"T. Dey, J. Levine, R. Wenger","doi":"10.1109/PG.2007.34","DOIUrl":null,"url":null,"abstract":"We present a Delaunay based algorithm for simplifying vector field datasets. Our aim is to reduce the size of the mesh on which the vector field is defined while preserving topological features of the original vector field. We leverage a simple paradigm, vertex deletion in Delaunay triangulations, to achieve this goal. This technique is effective for two reasons. First, we guide deletions by a local error metric that bounds the change of the vectors at the affected simplices and maintains regions near critical points to prevent topological changes. Second, piecewise-linear interpolation over Delaunay triangulations is known to give good approximations of scalar fields. Since a vector field can be regarded as a collection of component scalar fields, a Delaunay triangulation can preserve each component and thus the structure of the vector field as a whole. We provide experimental evidence showing the effectiveness of our technique and its ability to preserve features of both two and three dimensional vector fields.","PeriodicalId":376934,"journal":{"name":"15th Pacific Conference on Computer Graphics and Applications (PG'07)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"A Delaunay Simplification Algorithm for Vector Fields\",\"authors\":\"T. Dey, J. Levine, R. Wenger\",\"doi\":\"10.1109/PG.2007.34\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a Delaunay based algorithm for simplifying vector field datasets. Our aim is to reduce the size of the mesh on which the vector field is defined while preserving topological features of the original vector field. We leverage a simple paradigm, vertex deletion in Delaunay triangulations, to achieve this goal. This technique is effective for two reasons. First, we guide deletions by a local error metric that bounds the change of the vectors at the affected simplices and maintains regions near critical points to prevent topological changes. Second, piecewise-linear interpolation over Delaunay triangulations is known to give good approximations of scalar fields. Since a vector field can be regarded as a collection of component scalar fields, a Delaunay triangulation can preserve each component and thus the structure of the vector field as a whole. We provide experimental evidence showing the effectiveness of our technique and its ability to preserve features of both two and three dimensional vector fields.\",\"PeriodicalId\":376934,\"journal\":{\"name\":\"15th Pacific Conference on Computer Graphics and Applications (PG'07)\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"15th Pacific Conference on Computer Graphics and Applications (PG'07)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PG.2007.34\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"15th Pacific Conference on Computer Graphics and Applications (PG'07)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PG.2007.34","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

提出了一种基于Delaunay的矢量场数据集简化算法。我们的目标是减少定义矢量场的网格的大小,同时保留原始矢量场的拓扑特征。我们利用一个简单的范例,即Delaunay三角剖分中的顶点删除来实现这一目标。这种方法之所以有效,有两个原因。首先,我们通过一个局部误差度量来引导删除,该度量限制了受影响简单点处向量的变化,并保持临界点附近的区域以防止拓扑变化。其次,分段线性插值在德劳内三角上给出了标量场的很好的近似。由于矢量场可以看作是分量标量场的集合,因此Delaunay三角剖分可以保留每个分量,从而保留矢量场的整体结构。我们提供了实验证据,证明了我们的技术的有效性及其保留二维和三维矢量场特征的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Delaunay Simplification Algorithm for Vector Fields
We present a Delaunay based algorithm for simplifying vector field datasets. Our aim is to reduce the size of the mesh on which the vector field is defined while preserving topological features of the original vector field. We leverage a simple paradigm, vertex deletion in Delaunay triangulations, to achieve this goal. This technique is effective for two reasons. First, we guide deletions by a local error metric that bounds the change of the vectors at the affected simplices and maintains regions near critical points to prevent topological changes. Second, piecewise-linear interpolation over Delaunay triangulations is known to give good approximations of scalar fields. Since a vector field can be regarded as a collection of component scalar fields, a Delaunay triangulation can preserve each component and thus the structure of the vector field as a whole. We provide experimental evidence showing the effectiveness of our technique and its ability to preserve features of both two and three dimensional vector fields.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A New Volumetric Implicit Surface Data Structure and Its Triangulation Algorithm Applied to Mesh Integration Simple and Efficient Mesh Editing with Consistent Local Frames Visualisation of Implicit Algebraic Curves Fast and Faithful Geometric Algorithm for Detecting Crest Lines on Meshes Radiometric Compensation through Inverse Light Transport
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1