结合侧面或正面视角深度信息的双扬声器场景中的视听语音活动检测

Spyridon Thermos, G. Potamianos
{"title":"结合侧面或正面视角深度信息的双扬声器场景中的视听语音活动检测","authors":"Spyridon Thermos, G. Potamianos","doi":"10.1109/SLT.2016.7846321","DOIUrl":null,"url":null,"abstract":"Motivated by increasing popularity of depth visual sensors, such as the Kinect device, we investigate the utility of depth information in audio-visual speech activity detection. A two-subject scenario is assumed, allowing to also consider speech overlap. Two sensory setups are employed, where depth video captures either a frontal or profile view of the subjects, and is subsequently combined with the corresponding planar video and audio streams. Further, multi-view fusion is regarded, using audio and planar video from a sensor at the complementary view setup. Support vector machines provide temporal speech activity classification for each visually detected subject, fusing the available modality streams. Classification results are further combined to yield speaker diarization. Experiments are reported on a suitable audio-visual corpus recorded by two Kinects. Results demonstrate the benefits of depth information, particularly in the frontal depth view setup, reducing speech activity detection and speaker diarization errors over systems that ignore it.","PeriodicalId":281635,"journal":{"name":"2016 IEEE Spoken Language Technology Workshop (SLT)","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Audio-visual speech activity detection in a two-speaker scenario incorporating depth information from a profile or frontal view\",\"authors\":\"Spyridon Thermos, G. Potamianos\",\"doi\":\"10.1109/SLT.2016.7846321\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Motivated by increasing popularity of depth visual sensors, such as the Kinect device, we investigate the utility of depth information in audio-visual speech activity detection. A two-subject scenario is assumed, allowing to also consider speech overlap. Two sensory setups are employed, where depth video captures either a frontal or profile view of the subjects, and is subsequently combined with the corresponding planar video and audio streams. Further, multi-view fusion is regarded, using audio and planar video from a sensor at the complementary view setup. Support vector machines provide temporal speech activity classification for each visually detected subject, fusing the available modality streams. Classification results are further combined to yield speaker diarization. Experiments are reported on a suitable audio-visual corpus recorded by two Kinects. Results demonstrate the benefits of depth information, particularly in the frontal depth view setup, reducing speech activity detection and speaker diarization errors over systems that ignore it.\",\"PeriodicalId\":281635,\"journal\":{\"name\":\"2016 IEEE Spoken Language Technology Workshop (SLT)\",\"volume\":\"56 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE Spoken Language Technology Workshop (SLT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SLT.2016.7846321\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Spoken Language Technology Workshop (SLT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SLT.2016.7846321","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

随着深度视觉传感器(如Kinect设备)的日益普及,我们研究了深度信息在视听语音活动检测中的应用。假设有两个主体的场景,也考虑到语音重叠。采用了两种感官设置,其中深度视频捕获对象的正面或侧面视图,并随后与相应的平面视频和音频流相结合。此外,还考虑了多视图融合,在互补视图设置中使用来自传感器的音频和平面视频。支持向量机为每个视觉检测到的主题提供时间语音活动分类,融合可用的情态流。分类结果进一步组合得到说话人的特征。本文报道了用两个kinect记录的合适的视听语料库进行的实验。结果表明深度信息的好处,特别是在正面深度视图设置中,与忽略它的系统相比,可以减少语音活动检测和说话人拨号错误。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Audio-visual speech activity detection in a two-speaker scenario incorporating depth information from a profile or frontal view
Motivated by increasing popularity of depth visual sensors, such as the Kinect device, we investigate the utility of depth information in audio-visual speech activity detection. A two-subject scenario is assumed, allowing to also consider speech overlap. Two sensory setups are employed, where depth video captures either a frontal or profile view of the subjects, and is subsequently combined with the corresponding planar video and audio streams. Further, multi-view fusion is regarded, using audio and planar video from a sensor at the complementary view setup. Support vector machines provide temporal speech activity classification for each visually detected subject, fusing the available modality streams. Classification results are further combined to yield speaker diarization. Experiments are reported on a suitable audio-visual corpus recorded by two Kinects. Results demonstrate the benefits of depth information, particularly in the frontal depth view setup, reducing speech activity detection and speaker diarization errors over systems that ignore it.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Further optimisations of constant Q cepstral processing for integrated utterance and text-dependent speaker verification Learning dialogue dynamics with the method of moments A study of speech distortion conditions in real scenarios for speech processing applications Comparing speaker independent and speaker adapted classification for word prominence detection Influence of corpus size and content on the perceptual quality of a unit selection MaryTTS voice
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1