通过随机行走产生的移动模式来抓取Facebook上的全球威胁

C. Piña-García, Dongbing Gu
{"title":"通过随机行走产生的移动模式来抓取Facebook上的全球威胁","authors":"C. Piña-García, Dongbing Gu","doi":"10.1109/CEEC.2012.6375376","DOIUrl":null,"url":null,"abstract":"Predicting the occurrence of emerging global threats through Open Social Networks has become a paramount task for national security agencies. We study a set of four foraging strategies to provide an automated searching across the Facebook social network. Our work shows how movement patterns generated by random walks can be developed and applied as novel choices for facing a complex environment, e.g. the Facebook social graph. We develop four algorithms based on optimal foraging theory for crawling the social network and gathering publicly accessible data. We also use our random walks with the aim of sampling and collecting open information through millions of Facebook messages. Finally, this approach allows us to glean insights into the collective moods of regions or groups abroad.","PeriodicalId":142286,"journal":{"name":"2012 4th Computer Science and Electronic Engineering Conference (CEEC)","volume":"154 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Scraping global threats in Facebook through movement patterns generated by random walks\",\"authors\":\"C. Piña-García, Dongbing Gu\",\"doi\":\"10.1109/CEEC.2012.6375376\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Predicting the occurrence of emerging global threats through Open Social Networks has become a paramount task for national security agencies. We study a set of four foraging strategies to provide an automated searching across the Facebook social network. Our work shows how movement patterns generated by random walks can be developed and applied as novel choices for facing a complex environment, e.g. the Facebook social graph. We develop four algorithms based on optimal foraging theory for crawling the social network and gathering publicly accessible data. We also use our random walks with the aim of sampling and collecting open information through millions of Facebook messages. Finally, this approach allows us to glean insights into the collective moods of regions or groups abroad.\",\"PeriodicalId\":142286,\"journal\":{\"name\":\"2012 4th Computer Science and Electronic Engineering Conference (CEEC)\",\"volume\":\"154 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 4th Computer Science and Electronic Engineering Conference (CEEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CEEC.2012.6375376\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 4th Computer Science and Electronic Engineering Conference (CEEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEEC.2012.6375376","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

通过开放的社会网络来预测新兴的全球威胁的发生已经成为国家安全机构的首要任务。我们研究了一组四种觅食策略,以提供跨Facebook社交网络的自动搜索。我们的工作展示了随机行走产生的运动模式如何被开发和应用于面对复杂环境的新选择,例如Facebook社交图谱。我们开发了四种基于最优觅食理论的算法,用于爬行社交网络和收集公开可访问的数据。我们还使用随机漫步的目的是抽样和收集数百万Facebook消息中的公开信息。最后,这种方法使我们能够深入了解国外地区或群体的集体情绪。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Scraping global threats in Facebook through movement patterns generated by random walks
Predicting the occurrence of emerging global threats through Open Social Networks has become a paramount task for national security agencies. We study a set of four foraging strategies to provide an automated searching across the Facebook social network. Our work shows how movement patterns generated by random walks can be developed and applied as novel choices for facing a complex environment, e.g. the Facebook social graph. We develop four algorithms based on optimal foraging theory for crawling the social network and gathering publicly accessible data. We also use our random walks with the aim of sampling and collecting open information through millions of Facebook messages. Finally, this approach allows us to glean insights into the collective moods of regions or groups abroad.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The importance of social tie detection in socially-aware opportunistic routing On the control of generic abelian group codes Performance analysis of hybrid network for cloud datacenter Applying Gaussian mixture model on Discrete Cosine features for image segmentation and classification Energy efficient transmission power estimation for WLAN VoIP
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1