{"title":"考虑热效应的锂离子电池自适应充电策略","authors":"Yujie Ding, Haimeng Wu, Zhiwei Gao, Hailong Zhang","doi":"10.1109/peas53589.2021.9628459","DOIUrl":null,"url":null,"abstract":"With the increasing deployment of the electric vehicles, the study of advanced battery charging strategy has become of great significance to improve charging performance with reduced loss. This paper presents an optimized adaptive charging strategy for EV battery packs based on a developed system loss model. An electrical model integrated with thermal properties for the lithium-ion battery with cooling as well as a full loss model for the power converter have been included in this complete model. To reduce the overall loss of the charging system, the influence of temperature and varying internal resistance at different state of charge (SOC) have been considered to obtain an objective function. Moreover, an enhanced particle swarm optimization (PSO) algorithm is proposed and applied to speed up convergence time as well as enhance the precision of the solution. The results show that this proposed strategy can reduce the total loss by 4.01% and a 7.48% decrease of the charging time compared with the classical approach without applying this optimization.","PeriodicalId":268264,"journal":{"name":"2021 IEEE 1st International Power Electronics and Application Symposium (PEAS)","volume":"325 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"An Adaptive Charging Strategy of Lithium-ion Battery for Loss Reduction with Thermal Effect Consideration\",\"authors\":\"Yujie Ding, Haimeng Wu, Zhiwei Gao, Hailong Zhang\",\"doi\":\"10.1109/peas53589.2021.9628459\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the increasing deployment of the electric vehicles, the study of advanced battery charging strategy has become of great significance to improve charging performance with reduced loss. This paper presents an optimized adaptive charging strategy for EV battery packs based on a developed system loss model. An electrical model integrated with thermal properties for the lithium-ion battery with cooling as well as a full loss model for the power converter have been included in this complete model. To reduce the overall loss of the charging system, the influence of temperature and varying internal resistance at different state of charge (SOC) have been considered to obtain an objective function. Moreover, an enhanced particle swarm optimization (PSO) algorithm is proposed and applied to speed up convergence time as well as enhance the precision of the solution. The results show that this proposed strategy can reduce the total loss by 4.01% and a 7.48% decrease of the charging time compared with the classical approach without applying this optimization.\",\"PeriodicalId\":268264,\"journal\":{\"name\":\"2021 IEEE 1st International Power Electronics and Application Symposium (PEAS)\",\"volume\":\"325 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 1st International Power Electronics and Application Symposium (PEAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/peas53589.2021.9628459\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 1st International Power Electronics and Application Symposium (PEAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/peas53589.2021.9628459","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An Adaptive Charging Strategy of Lithium-ion Battery for Loss Reduction with Thermal Effect Consideration
With the increasing deployment of the electric vehicles, the study of advanced battery charging strategy has become of great significance to improve charging performance with reduced loss. This paper presents an optimized adaptive charging strategy for EV battery packs based on a developed system loss model. An electrical model integrated with thermal properties for the lithium-ion battery with cooling as well as a full loss model for the power converter have been included in this complete model. To reduce the overall loss of the charging system, the influence of temperature and varying internal resistance at different state of charge (SOC) have been considered to obtain an objective function. Moreover, an enhanced particle swarm optimization (PSO) algorithm is proposed and applied to speed up convergence time as well as enhance the precision of the solution. The results show that this proposed strategy can reduce the total loss by 4.01% and a 7.48% decrease of the charging time compared with the classical approach without applying this optimization.