基于LC-KSVD稀疏编码的卫星图像分类

Kaveen Liyanage, Bradley M. Whitaker
{"title":"基于LC-KSVD稀疏编码的卫星图像分类","authors":"Kaveen Liyanage, Bradley M. Whitaker","doi":"10.1109/IETC47856.2020.9249174","DOIUrl":null,"url":null,"abstract":"Deep learning methods achieve very high classification accuracies in many tasks, including satellite image classification. However, these methods lack the transparency and simplicity of other classification algorithms. Sparse coding has emerged as an effective tool in classifying images, and provides the user with an efficient algorithm that easily relates the classification output to the original input feature space. In this work, we explore the viability and the effectiveness of a popular sparse coding algorithm, label-consistent k-means singular value decomposition (LC-KSVD), in classifying images from the satellite data set Sat-4. This paper provides a framework for using feature extraction, sparse coding, dictionary learning, and classifier training on the Sat-4 dataset, achieving a 94.5 % accuracy.","PeriodicalId":186446,"journal":{"name":"2020 Intermountain Engineering, Technology and Computing (IETC)","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Satellite Image Classification Using LC-KSVD Sparse Coding\",\"authors\":\"Kaveen Liyanage, Bradley M. Whitaker\",\"doi\":\"10.1109/IETC47856.2020.9249174\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deep learning methods achieve very high classification accuracies in many tasks, including satellite image classification. However, these methods lack the transparency and simplicity of other classification algorithms. Sparse coding has emerged as an effective tool in classifying images, and provides the user with an efficient algorithm that easily relates the classification output to the original input feature space. In this work, we explore the viability and the effectiveness of a popular sparse coding algorithm, label-consistent k-means singular value decomposition (LC-KSVD), in classifying images from the satellite data set Sat-4. This paper provides a framework for using feature extraction, sparse coding, dictionary learning, and classifier training on the Sat-4 dataset, achieving a 94.5 % accuracy.\",\"PeriodicalId\":186446,\"journal\":{\"name\":\"2020 Intermountain Engineering, Technology and Computing (IETC)\",\"volume\":\"63 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 Intermountain Engineering, Technology and Computing (IETC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IETC47856.2020.9249174\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 Intermountain Engineering, Technology and Computing (IETC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IETC47856.2020.9249174","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

深度学习方法在许多任务中实现了非常高的分类精度,包括卫星图像分类。然而,这些方法缺乏其他分类算法的透明性和简单性。稀疏编码作为一种有效的图像分类工具,为用户提供了一种高效的算法,可以很容易地将分类输出与原始输入特征空间联系起来。在这项工作中,我们探讨了一种流行的稀疏编码算法的可行性和有效性,即标签一致k-均值奇异值分解(LC-KSVD),用于对卫星数据集Sat-4的图像进行分类。本文提供了一个在Sat-4数据集上使用特征提取、稀疏编码、字典学习和分类器训练的框架,达到了94.5%的准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Satellite Image Classification Using LC-KSVD Sparse Coding
Deep learning methods achieve very high classification accuracies in many tasks, including satellite image classification. However, these methods lack the transparency and simplicity of other classification algorithms. Sparse coding has emerged as an effective tool in classifying images, and provides the user with an efficient algorithm that easily relates the classification output to the original input feature space. In this work, we explore the viability and the effectiveness of a popular sparse coding algorithm, label-consistent k-means singular value decomposition (LC-KSVD), in classifying images from the satellite data set Sat-4. This paper provides a framework for using feature extraction, sparse coding, dictionary learning, and classifier training on the Sat-4 dataset, achieving a 94.5 % accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Virtual Reality Training in Electric Utility Sector - An Underground Application Study Case Different assignments as different contexts: predictors across assignments and outcome measures in CS1 2020 Intermountain Engineering, Technology and Computing (IETC) Micromachining of Silicon Carbide using Wire Electrical Discharge Machining Stereophonic Frequency Modulation using MATLAB: An Undergraduate Research Project
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1