基于估计的自适应流量聚合方法减少软件定义无线网络的控制流量

Kazuki Mizuyama, Yuzo Taenaka, K. Tsukamoto
{"title":"基于估计的自适应流量聚合方法减少软件定义无线网络的控制流量","authors":"Kazuki Mizuyama, Yuzo Taenaka, K. Tsukamoto","doi":"10.1109/PERCOMW.2017.7917589","DOIUrl":null,"url":null,"abstract":"Applying Software Defined Network (SDN) technology to wireless network attracts much attention. Our previous study proposed several channel utilization methods based on SDN/OpenFlow-enabled multi-channel wireless mesh network (WMN). However, since control messages are transmitted with data traffic on a same channel in WMN, it inevitably affects the network capacity. Especially, the amount of control messages for collecting statistical information of each flow (FlowStats) linearly increases in accordance with the number of flows, thereby being the dominant overhead. In this paper, we propose a method that prevents the increase of control traffic while maintaining network performance. Specifically, our proposed method uses statistical information of each interface (PortStats) instead of FlowStats, and handles multiple flows on the interface together. To handle a part of flows, we propose a way to estimate statistical information of individual flow without extra control messages. Finally, we show that the proposed method can maintain good network capacity with less packet losses and less control messages.","PeriodicalId":319638,"journal":{"name":"2017 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Estimation based adaptable Flow Aggregation Method for reducing control traffic on Software Defined wireless Networks\",\"authors\":\"Kazuki Mizuyama, Yuzo Taenaka, K. Tsukamoto\",\"doi\":\"10.1109/PERCOMW.2017.7917589\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Applying Software Defined Network (SDN) technology to wireless network attracts much attention. Our previous study proposed several channel utilization methods based on SDN/OpenFlow-enabled multi-channel wireless mesh network (WMN). However, since control messages are transmitted with data traffic on a same channel in WMN, it inevitably affects the network capacity. Especially, the amount of control messages for collecting statistical information of each flow (FlowStats) linearly increases in accordance with the number of flows, thereby being the dominant overhead. In this paper, we propose a method that prevents the increase of control traffic while maintaining network performance. Specifically, our proposed method uses statistical information of each interface (PortStats) instead of FlowStats, and handles multiple flows on the interface together. To handle a part of flows, we propose a way to estimate statistical information of individual flow without extra control messages. Finally, we show that the proposed method can maintain good network capacity with less packet losses and less control messages.\",\"PeriodicalId\":319638,\"journal\":{\"name\":\"2017 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops)\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PERCOMW.2017.7917589\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PERCOMW.2017.7917589","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

软件定义网络(SDN)技术在无线网络中的应用备受关注。我们之前的研究提出了几种基于支持SDN/ openflow的多通道无线网状网络(WMN)的信道利用方法。然而,由于控制消息在WMN中与数据业务在同一信道上传输,不可避免地会影响网络容量。特别是,用于收集每个流的统计信息(FlowStats)的控制消息的数量会随着流的数量线性增加,从而成为主要的开销。在本文中,我们提出了一种在保持网络性能的同时防止控制流量增加的方法。具体来说,我们提出的方法使用每个接口的统计信息(PortStats)而不是FlowStats,并且一起处理接口上的多个流。为了处理一部分流,我们提出了一种无需额外控制消息即可估计单个流的统计信息的方法。最后,我们证明了该方法可以保持良好的网络容量,减少丢包和控制消息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Estimation based adaptable Flow Aggregation Method for reducing control traffic on Software Defined wireless Networks
Applying Software Defined Network (SDN) technology to wireless network attracts much attention. Our previous study proposed several channel utilization methods based on SDN/OpenFlow-enabled multi-channel wireless mesh network (WMN). However, since control messages are transmitted with data traffic on a same channel in WMN, it inevitably affects the network capacity. Especially, the amount of control messages for collecting statistical information of each flow (FlowStats) linearly increases in accordance with the number of flows, thereby being the dominant overhead. In this paper, we propose a method that prevents the increase of control traffic while maintaining network performance. Specifically, our proposed method uses statistical information of each interface (PortStats) instead of FlowStats, and handles multiple flows on the interface together. To handle a part of flows, we propose a way to estimate statistical information of individual flow without extra control messages. Finally, we show that the proposed method can maintain good network capacity with less packet losses and less control messages.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
相关文献
二甲双胍通过HDAC6和FoxO3a转录调控肌肉生长抑制素诱导肌肉萎缩
IF 8.9 1区 医学Journal of Cachexia, Sarcopenia and MusclePub Date : 2021-11-02 DOI: 10.1002/jcsm.12833
Min Ju Kang, Ji Wook Moon, Jung Ok Lee, Ji Hae Kim, Eun Jeong Jung, Su Jin Kim, Joo Yeon Oh, Sang Woo Wu, Pu Reum Lee, Sun Hwa Park, Hyeon Soo Kim
具有疾病敏感单倍型的非亲属供体脐带血移植后的1型糖尿病
IF 3.2 3区 医学Journal of Diabetes InvestigationPub Date : 2022-11-02 DOI: 10.1111/jdi.13939
Kensuke Matsumoto, Taisuke Matsuyama, Ritsu Sumiyoshi, Matsuo Takuji, Tadashi Yamamoto, Ryosuke Shirasaki, Haruko Tashiro
封面:蛋白质组学分析确定IRSp53和fastin是PRV输出和直接细胞-细胞传播的关键
IF 3.4 4区 生物学ProteomicsPub Date : 2019-12-02 DOI: 10.1002/pmic.201970201
Fei-Long Yu, Huan Miao, Jinjin Xia, Fan Jia, Huadong Wang, Fuqiang Xu, Lin Guo
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Sensitivity to web hosting in a mobile field survey NFC based dataset annotation within a behavioral alerting platform An aggregation and visualization technique for crowd-sourced continuous monitoring of transport infrastructures Trainwear: A real-time assisted training feedback system with fabric wearable sensors Toward real-time in-home activity recognition using indoor positioning sensor and power meters
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1