基于神经网络的含摩擦和参数不确定柔性关节自适应高精度位置控制

E.Y.O. Sidi, P. Sicard, D. Massicotte, S. Lesueur
{"title":"基于神经网络的含摩擦和参数不确定柔性关节自适应高精度位置控制","authors":"E.Y.O. Sidi, P. Sicard, D. Massicotte, S. Lesueur","doi":"10.1109/CCECE.1998.682750","DOIUrl":null,"url":null,"abstract":"Dynamic position-control of a flexible joint is proposed by applying adaptive control and artificial neural networks (ANNs). A flexible joint is modeled, including Coulomb and static frictions and the model is represented as an ANN. The control strategy is based on a dual loop strategy. An outer load state feedback is used to compute desired load torque and motor state. An inner motor state feedback loop is used to control the motor. Both loops use feedforward compensation of friction. The controllers are represented as an ANN, the system parameters being the weights of the output layer. Parameter identification is achieved using the recursive least squares algorithm. Simulation results show that the proposed controller can suppress vibrations.","PeriodicalId":177613,"journal":{"name":"Conference Proceedings. IEEE Canadian Conference on Electrical and Computer Engineering (Cat. No.98TH8341)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Adaptive high precision position control for a flexible joint with friction and parameter uncertainties using neural networks\",\"authors\":\"E.Y.O. Sidi, P. Sicard, D. Massicotte, S. Lesueur\",\"doi\":\"10.1109/CCECE.1998.682750\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Dynamic position-control of a flexible joint is proposed by applying adaptive control and artificial neural networks (ANNs). A flexible joint is modeled, including Coulomb and static frictions and the model is represented as an ANN. The control strategy is based on a dual loop strategy. An outer load state feedback is used to compute desired load torque and motor state. An inner motor state feedback loop is used to control the motor. Both loops use feedforward compensation of friction. The controllers are represented as an ANN, the system parameters being the weights of the output layer. Parameter identification is achieved using the recursive least squares algorithm. Simulation results show that the proposed controller can suppress vibrations.\",\"PeriodicalId\":177613,\"journal\":{\"name\":\"Conference Proceedings. IEEE Canadian Conference on Electrical and Computer Engineering (Cat. No.98TH8341)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Conference Proceedings. IEEE Canadian Conference on Electrical and Computer Engineering (Cat. No.98TH8341)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCECE.1998.682750\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference Proceedings. IEEE Canadian Conference on Electrical and Computer Engineering (Cat. No.98TH8341)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCECE.1998.682750","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

将自适应控制与人工神经网络相结合,提出了柔性关节的动态位置控制方法。建立了包含库仑摩擦和静摩擦的柔性关节模型,并用人工神经网络表示。控制策略基于双环策略。外部负载状态反馈用于计算期望负载转矩和电机状态。采用电机内部状态反馈回路对电机进行控制。两个回路都采用摩擦前馈补偿。控制器被表示为一个人工神经网络,系统参数是输出层的权重。参数辨识采用递推最小二乘算法实现。仿真结果表明,该控制器能有效抑制振动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Adaptive high precision position control for a flexible joint with friction and parameter uncertainties using neural networks
Dynamic position-control of a flexible joint is proposed by applying adaptive control and artificial neural networks (ANNs). A flexible joint is modeled, including Coulomb and static frictions and the model is represented as an ANN. The control strategy is based on a dual loop strategy. An outer load state feedback is used to compute desired load torque and motor state. An inner motor state feedback loop is used to control the motor. Both loops use feedforward compensation of friction. The controllers are represented as an ANN, the system parameters being the weights of the output layer. Parameter identification is achieved using the recursive least squares algorithm. Simulation results show that the proposed controller can suppress vibrations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The use of ISDN signaling for real-time applications at homes and small businesses Multifractal analysis of DNA Multimedia courseware delivery over the Internet The VideoWriter: towards active paper for a natural user interface A performance based analysis of a robust flux controller for an induction motor drive
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1