基于深度学习算法的硅橡胶样品疏水性分类识别

Nesibe Demiroglu, Idris Ozdemir, Halil Ibrahim Uckol, S. Ilhan
{"title":"基于深度学习算法的硅橡胶样品疏水性分类识别","authors":"Nesibe Demiroglu, Idris Ozdemir, Halil Ibrahim Uckol, S. Ilhan","doi":"10.1109/UPEC55022.2022.9917706","DOIUrl":null,"url":null,"abstract":"This paper presents an approach to classify the hydrophobicity characteristic of silicone rubber (SiR) samples using deep learning algorithms. By deforming the hydrophobicity property of SiR samples using corona discharges, images of water droplets placed on the sample surface were acquired. From the images, the contact angles of the droplets were determined to find the hydrophobicity classes. The generated water droplet image dataset was trained, validated, and tested utilizing AlexNet, VGGNet, and ResNet. The result shows that the modified AlexNet model with an accuracy of 99.36% is a reliable diagnostic method to identify the hydrophobicity qualification of the SiR samples.","PeriodicalId":371561,"journal":{"name":"2022 57th International Universities Power Engineering Conference (UPEC)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Hydrophobicity Class Identification of Silicone-Rubber Samples using Deep Learning Algorithms\",\"authors\":\"Nesibe Demiroglu, Idris Ozdemir, Halil Ibrahim Uckol, S. Ilhan\",\"doi\":\"10.1109/UPEC55022.2022.9917706\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an approach to classify the hydrophobicity characteristic of silicone rubber (SiR) samples using deep learning algorithms. By deforming the hydrophobicity property of SiR samples using corona discharges, images of water droplets placed on the sample surface were acquired. From the images, the contact angles of the droplets were determined to find the hydrophobicity classes. The generated water droplet image dataset was trained, validated, and tested utilizing AlexNet, VGGNet, and ResNet. The result shows that the modified AlexNet model with an accuracy of 99.36% is a reliable diagnostic method to identify the hydrophobicity qualification of the SiR samples.\",\"PeriodicalId\":371561,\"journal\":{\"name\":\"2022 57th International Universities Power Engineering Conference (UPEC)\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 57th International Universities Power Engineering Conference (UPEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/UPEC55022.2022.9917706\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 57th International Universities Power Engineering Conference (UPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UPEC55022.2022.9917706","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种利用深度学习算法对硅橡胶(SiR)样品的疏水性特性进行分类的方法。通过电晕放电改变SiR样品的疏水性,获得放置在样品表面的水滴图像。从图像中确定液滴的接触角,以确定疏水性类别。生成的水滴图像数据集使用AlexNet、VGGNet和ResNet进行训练、验证和测试。结果表明,改进后的AlexNet模型准确率为99.36%,是一种可靠的诊断SiR样品疏水性合格性的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Hydrophobicity Class Identification of Silicone-Rubber Samples using Deep Learning Algorithms
This paper presents an approach to classify the hydrophobicity characteristic of silicone rubber (SiR) samples using deep learning algorithms. By deforming the hydrophobicity property of SiR samples using corona discharges, images of water droplets placed on the sample surface were acquired. From the images, the contact angles of the droplets were determined to find the hydrophobicity classes. The generated water droplet image dataset was trained, validated, and tested utilizing AlexNet, VGGNet, and ResNet. The result shows that the modified AlexNet model with an accuracy of 99.36% is a reliable diagnostic method to identify the hydrophobicity qualification of the SiR samples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Evaluation of Extending an Existing Substation Automation System using IEC 61850 Time Characteristic Curve Based Earth Fault Relay Selectivity Assessment for Optimal Overcurrent Relay Coordination in Distribution Networks Impact of the Photovoltaic Array Configuration on its Performance under Partial Shading Conditions The Impacts of The Temperature-Humidity Fluctuations in Substations and Practical Experimental Applications Synthesis and Characterization of Multi-level Pseudo-Random Sequences as Excitation Signals for System Identification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1