从两个相关的数据集中找到依赖的和独立的组件

J. Karhunen, T. Hao
{"title":"从两个相关的数据集中找到依赖的和独立的组件","authors":"J. Karhunen, T. Hao","doi":"10.1109/IJCNN.2011.6033257","DOIUrl":null,"url":null,"abstract":"Independent component analysis (ICA) and blind source separation (BSS) are usually applied to a single data set. Both these techniques are nowadays well understood, and several good methods based on somewhat varying assumptions on the data are available. In this paper, we consider an extension of ICA and BSS for separating mutually dependent and independent components from two different but related data sets. This problem is important in practice, because such data sets are common in real-world applications. We propose a new method which first uses canonical correlation analysis (CCA) for detecting subspaces of independent and dependent components. Standard ICA and BSS methods can after this be used for final separation of these components. The proposed method performs excellently for synthetic data sets for which the assumed data model holds exactly, and provides meaningful results for real-world robot grasping data. The method has a sound theoretical basis, and it is straightforward to implement and computationally not too demanding. Moreover, the proposed method has a very important by-product: its improves clearly the separation results provided by the FastICA and UniBSS methods that we have used in our experiments. Not only are the signal-to-noise ratios of the separated sources often clearly higher, but CCA preprocessing also helps FastICA to separate sources that it alone is not able to separate.","PeriodicalId":415833,"journal":{"name":"The 2011 International Joint Conference on Neural Networks","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Finding dependent and independent components from two related data sets\",\"authors\":\"J. Karhunen, T. Hao\",\"doi\":\"10.1109/IJCNN.2011.6033257\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Independent component analysis (ICA) and blind source separation (BSS) are usually applied to a single data set. Both these techniques are nowadays well understood, and several good methods based on somewhat varying assumptions on the data are available. In this paper, we consider an extension of ICA and BSS for separating mutually dependent and independent components from two different but related data sets. This problem is important in practice, because such data sets are common in real-world applications. We propose a new method which first uses canonical correlation analysis (CCA) for detecting subspaces of independent and dependent components. Standard ICA and BSS methods can after this be used for final separation of these components. The proposed method performs excellently for synthetic data sets for which the assumed data model holds exactly, and provides meaningful results for real-world robot grasping data. The method has a sound theoretical basis, and it is straightforward to implement and computationally not too demanding. Moreover, the proposed method has a very important by-product: its improves clearly the separation results provided by the FastICA and UniBSS methods that we have used in our experiments. Not only are the signal-to-noise ratios of the separated sources often clearly higher, but CCA preprocessing also helps FastICA to separate sources that it alone is not able to separate.\",\"PeriodicalId\":415833,\"journal\":{\"name\":\"The 2011 International Joint Conference on Neural Networks\",\"volume\":\"61 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The 2011 International Joint Conference on Neural Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJCNN.2011.6033257\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 2011 International Joint Conference on Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2011.6033257","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

独立分量分析(ICA)和盲源分离(BSS)通常用于单个数据集。这两种技术现在都得到了很好的理解,并且有几种基于对数据略有不同的假设的好方法。在本文中,我们考虑了ICA和BSS的扩展,用于从两个不同但相关的数据集中分离相互依赖和独立的组件。这个问题在实践中很重要,因为这样的数据集在实际应用程序中很常见。我们提出了一种新的方法,首先使用典型相关分析(CCA)来检测独立和相关分量的子空间。标准的ICA和BSS方法可以在此之后用于这些成分的最终分离。该方法在假设数据模型完全成立的合成数据集上表现出色,并为实际机器人抓取数据提供了有意义的结果。该方法具有良好的理论基础,实现简单,计算量不高。此外,所提出的方法有一个非常重要的副产品:它明显改善了我们在实验中使用的FastICA和UniBSS方法提供的分离结果。不仅分离后的信号源的信噪比通常明显更高,而且CCA预处理还可以帮助FastICA分离它本身无法分离的信号源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Finding dependent and independent components from two related data sets
Independent component analysis (ICA) and blind source separation (BSS) are usually applied to a single data set. Both these techniques are nowadays well understood, and several good methods based on somewhat varying assumptions on the data are available. In this paper, we consider an extension of ICA and BSS for separating mutually dependent and independent components from two different but related data sets. This problem is important in practice, because such data sets are common in real-world applications. We propose a new method which first uses canonical correlation analysis (CCA) for detecting subspaces of independent and dependent components. Standard ICA and BSS methods can after this be used for final separation of these components. The proposed method performs excellently for synthetic data sets for which the assumed data model holds exactly, and provides meaningful results for real-world robot grasping data. The method has a sound theoretical basis, and it is straightforward to implement and computationally not too demanding. Moreover, the proposed method has a very important by-product: its improves clearly the separation results provided by the FastICA and UniBSS methods that we have used in our experiments. Not only are the signal-to-noise ratios of the separated sources often clearly higher, but CCA preprocessing also helps FastICA to separate sources that it alone is not able to separate.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Chaos of protein folding EEG-based brain dynamics of driving distraction Residential energy system control and management using adaptive dynamic programming How the core theory of CLARION captures human decision-making Wiener systems for reconstruction of missing seismic traces
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1