深度感知运动去模糊

Li Xu, Jiaya Jia
{"title":"深度感知运动去模糊","authors":"Li Xu, Jiaya Jia","doi":"10.1109/ICCPhot.2012.6215220","DOIUrl":null,"url":null,"abstract":"Motion deblurring from images that are captured in a scene with depth variation needs to estimate spatially-varying point spread functions (PSFs). We tackle this problemwith a stereopsis configuration, using depth information to help blur removal. We observe that the simple scheme to partition the blurred images into regions and estimate their PSFs respectively may make small-size regions lack necessary structural information to guide PSF estimation and accordingly propose region trees to hierarchically estimate them. Erroneous PSFs are rejected with a novel PSF selection scheme, based on the shock filtering invariance of natural images. Our framework also applies to general single-image spatially-varying deblurring.","PeriodicalId":169984,"journal":{"name":"2012 IEEE International Conference on Computational Photography (ICCP)","volume":"650 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"95","resultStr":"{\"title\":\"Depth-aware motion deblurring\",\"authors\":\"Li Xu, Jiaya Jia\",\"doi\":\"10.1109/ICCPhot.2012.6215220\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Motion deblurring from images that are captured in a scene with depth variation needs to estimate spatially-varying point spread functions (PSFs). We tackle this problemwith a stereopsis configuration, using depth information to help blur removal. We observe that the simple scheme to partition the blurred images into regions and estimate their PSFs respectively may make small-size regions lack necessary structural information to guide PSF estimation and accordingly propose region trees to hierarchically estimate them. Erroneous PSFs are rejected with a novel PSF selection scheme, based on the shock filtering invariance of natural images. Our framework also applies to general single-image spatially-varying deblurring.\",\"PeriodicalId\":169984,\"journal\":{\"name\":\"2012 IEEE International Conference on Computational Photography (ICCP)\",\"volume\":\"650 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"95\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE International Conference on Computational Photography (ICCP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCPhot.2012.6215220\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Conference on Computational Photography (ICCP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCPhot.2012.6215220","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 95

摘要

对深度变化场景中捕获的图像进行运动去模糊需要估计空间变化点扩展函数(psf)。我们用立体视觉配置来解决这个问题,使用深度信息来帮助去除模糊。我们观察到,将模糊图像划分为区域并分别估计其PSF的简单方案可能会使小尺寸区域缺乏必要的结构信息来指导PSF估计,因此提出了区域树对其进行分层估计。基于自然图像的冲击滤波不变性,提出了一种新的PSF选择方案。我们的框架也适用于一般的单图像空间变化去模糊。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Depth-aware motion deblurring
Motion deblurring from images that are captured in a scene with depth variation needs to estimate spatially-varying point spread functions (PSFs). We tackle this problemwith a stereopsis configuration, using depth information to help blur removal. We observe that the simple scheme to partition the blurred images into regions and estimate their PSFs respectively may make small-size regions lack necessary structural information to guide PSF estimation and accordingly propose region trees to hierarchically estimate them. Erroneous PSFs are rejected with a novel PSF selection scheme, based on the shock filtering invariance of natural images. Our framework also applies to general single-image spatially-varying deblurring.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Contrast preserving decolorization Fast reactive control for illumination through rain and snow Diffuse structured light CS-MUVI: Video compressive sensing for spatial-multiplexing cameras Calibration-free rolling shutter removal
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1