大鼠运动和热应激时HSP70的诱导:体内温度的作用。

K. Kregel, R. Skidmore, J. Gutierrez, V. Guerriero
{"title":"大鼠运动和热应激时HSP70的诱导:体内温度的作用。","authors":"K. Kregel, R. Skidmore, J. Gutierrez, V. Guerriero","doi":"10.1249/00005768-199405001-00755","DOIUrl":null,"url":null,"abstract":"The purpose of this study was to determine if the accumulation of the 72-kDa heat shock protein (HSP70) is elevated in response to a prolonged bout of submaximal exercise in which colonic temperature (Tco) remained at control levels. Sprague-Dawley rats were randomly assigned to one of four testing groups [n = 8 per group; ambient temperatures (Ta) for each condition are included]: 1) control (cool/rest; Ta = 24 degrees C); 2) cool and exercise (cool/exercise; Ta = 14 degrees C); 3) nonexertional heating (heat/rest; Ta = 42 degrees C); 4) heat and exercise (heat/exercise; Ta = 32 degrees C). All interventions were approximately 60 min in duration. An exercise bout consisted of treadmill running at 17 m/min and 0% grade, while the heat/rest and heat/exercise experiments consisted of heat exposure that was terminated when Tco reached 41 degrees C. Baseline Tco was similar for all four groups. In the cool/rest and cool/exercise groups, final Tco was not different from the baseline values, nor was it different between these two groups. In the heat/rest and heat/exercise groups, heating rates were similar. Tissue samples were obtained from the gastrocnemius, soleus, and extensor digitorum longus (EDL) muscles of the left hindlimb and the left ventricle 30 min after a trial was completed. An enzyme-linked immunosorbent assay specific for HSP70 was used to directly quantitate absolute levels of HSP70 in tissues. There were significant main effects of both heating and exercise for HSP70 levels in the gastrocnemius, soleus, and left ventricle (P < 0.05).(ABSTRACT TRUNCATED AT 250 WORDS)","PeriodicalId":125752,"journal":{"name":"The American journal of physiology","volume":"18 4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"90","resultStr":"{\"title\":\"HSP70 induction during exercise and heat stress in rats: role of internal temperature.\",\"authors\":\"K. Kregel, R. Skidmore, J. Gutierrez, V. Guerriero\",\"doi\":\"10.1249/00005768-199405001-00755\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The purpose of this study was to determine if the accumulation of the 72-kDa heat shock protein (HSP70) is elevated in response to a prolonged bout of submaximal exercise in which colonic temperature (Tco) remained at control levels. Sprague-Dawley rats were randomly assigned to one of four testing groups [n = 8 per group; ambient temperatures (Ta) for each condition are included]: 1) control (cool/rest; Ta = 24 degrees C); 2) cool and exercise (cool/exercise; Ta = 14 degrees C); 3) nonexertional heating (heat/rest; Ta = 42 degrees C); 4) heat and exercise (heat/exercise; Ta = 32 degrees C). All interventions were approximately 60 min in duration. An exercise bout consisted of treadmill running at 17 m/min and 0% grade, while the heat/rest and heat/exercise experiments consisted of heat exposure that was terminated when Tco reached 41 degrees C. Baseline Tco was similar for all four groups. In the cool/rest and cool/exercise groups, final Tco was not different from the baseline values, nor was it different between these two groups. In the heat/rest and heat/exercise groups, heating rates were similar. Tissue samples were obtained from the gastrocnemius, soleus, and extensor digitorum longus (EDL) muscles of the left hindlimb and the left ventricle 30 min after a trial was completed. An enzyme-linked immunosorbent assay specific for HSP70 was used to directly quantitate absolute levels of HSP70 in tissues. There were significant main effects of both heating and exercise for HSP70 levels in the gastrocnemius, soleus, and left ventricle (P < 0.05).(ABSTRACT TRUNCATED AT 250 WORDS)\",\"PeriodicalId\":125752,\"journal\":{\"name\":\"The American journal of physiology\",\"volume\":\"18 4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"90\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The American journal of physiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1249/00005768-199405001-00755\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The American journal of physiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1249/00005768-199405001-00755","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 90

摘要

本研究的目的是确定72 kda热休克蛋白(HSP70)的积累是否在长时间的亚极限运动中升高,而结肠温度(Tco)保持在控制水平。将Sprague-Dawley大鼠随机分为4个实验组[每组8只;[1]控制(冷却/休息;Ta = 24℃);2) cool and exercise (cool/锻炼;Ta = 14℃);3)非劳力加热(加热/休息;Ta = 42℃);4)热量和运动(热量/运动;Ta = 32℃)。所有干预持续时间约为60分钟。一组运动包括以17米/分钟的速度在跑步机上跑步,而热/休息和热/运动实验包括热暴露,当Tco达到41摄氏度时终止。四组的基线Tco相似。在凉爽/休息组和凉爽/运动组中,最终Tco与基线值没有差异,两组之间也没有差异。在热/休息组和热/运动组中,升温速率相似。试验完成30分钟后,从左后肢和左心室的腓肠肌、比目鱼肌和指长伸肌(EDL)获得组织样本。采用HSP70特异性酶联免疫吸附法直接定量组织中HSP70的绝对水平。加热和运动对腓肠肌、比目鱼肌和左心室HSP70水平均有显著的主要影响(P < 0.05)。(摘要删节250字)
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
HSP70 induction during exercise and heat stress in rats: role of internal temperature.
The purpose of this study was to determine if the accumulation of the 72-kDa heat shock protein (HSP70) is elevated in response to a prolonged bout of submaximal exercise in which colonic temperature (Tco) remained at control levels. Sprague-Dawley rats were randomly assigned to one of four testing groups [n = 8 per group; ambient temperatures (Ta) for each condition are included]: 1) control (cool/rest; Ta = 24 degrees C); 2) cool and exercise (cool/exercise; Ta = 14 degrees C); 3) nonexertional heating (heat/rest; Ta = 42 degrees C); 4) heat and exercise (heat/exercise; Ta = 32 degrees C). All interventions were approximately 60 min in duration. An exercise bout consisted of treadmill running at 17 m/min and 0% grade, while the heat/rest and heat/exercise experiments consisted of heat exposure that was terminated when Tco reached 41 degrees C. Baseline Tco was similar for all four groups. In the cool/rest and cool/exercise groups, final Tco was not different from the baseline values, nor was it different between these two groups. In the heat/rest and heat/exercise groups, heating rates were similar. Tissue samples were obtained from the gastrocnemius, soleus, and extensor digitorum longus (EDL) muscles of the left hindlimb and the left ventricle 30 min after a trial was completed. An enzyme-linked immunosorbent assay specific for HSP70 was used to directly quantitate absolute levels of HSP70 in tissues. There were significant main effects of both heating and exercise for HSP70 levels in the gastrocnemius, soleus, and left ventricle (P < 0.05).(ABSTRACT TRUNCATED AT 250 WORDS)
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Now what? Protein kinase A phosphorylation is involved in regulated exocytosis of aquaporin-2 in transfected LLC-PK1 cells. Hepatocytes in the bile duct-ligated rat express Bcl-2. Synergistic vascular effects of dietary sodium supplementation and angiotensin II administration. Recombinant thrombomodulin prevents endotoxin-induced lung injury in rats by inhibiting leukocyte activation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1