大型数据库数据挖掘的一种新的数据聚类方法

Cheng-Fa Tsai, Hang-Chang Wu, Chun-Wei Tsai
{"title":"大型数据库数据挖掘的一种新的数据聚类方法","authors":"Cheng-Fa Tsai, Hang-Chang Wu, Chun-Wei Tsai","doi":"10.1109/ISPAN.2002.1004300","DOIUrl":null,"url":null,"abstract":"Clustering is the unsupervised classification of patterns (data item, feature vectors, or observations) into groups (clusters). Clustering in data mining is very useful to discover distribution patterns in the underlying data. Clustering algorithms usually employ a distance metric-based similarity measure in order to partition the database such that data points in the same partition are more similar than points in different partitions. In this paper, we present a new data clustering method for data mining in large databases. Our simulation results show that the proposed novel clustering method performs better than a fast self-organizing map (FSOM) combined with the k-means approach (FSOM+k-means) and the genetic k-means algorithm (GKA). In addition, in all the cases we studied, our method produces much smaller errors than both the FSOM+k-means approach and GKA.","PeriodicalId":255069,"journal":{"name":"Proceedings International Symposium on Parallel Architectures, Algorithms and Networks. I-SPAN'02","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"64","resultStr":"{\"title\":\"A new data clustering approach for data mining in large databases\",\"authors\":\"Cheng-Fa Tsai, Hang-Chang Wu, Chun-Wei Tsai\",\"doi\":\"10.1109/ISPAN.2002.1004300\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Clustering is the unsupervised classification of patterns (data item, feature vectors, or observations) into groups (clusters). Clustering in data mining is very useful to discover distribution patterns in the underlying data. Clustering algorithms usually employ a distance metric-based similarity measure in order to partition the database such that data points in the same partition are more similar than points in different partitions. In this paper, we present a new data clustering method for data mining in large databases. Our simulation results show that the proposed novel clustering method performs better than a fast self-organizing map (FSOM) combined with the k-means approach (FSOM+k-means) and the genetic k-means algorithm (GKA). In addition, in all the cases we studied, our method produces much smaller errors than both the FSOM+k-means approach and GKA.\",\"PeriodicalId\":255069,\"journal\":{\"name\":\"Proceedings International Symposium on Parallel Architectures, Algorithms and Networks. I-SPAN'02\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"64\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings International Symposium on Parallel Architectures, Algorithms and Networks. I-SPAN'02\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISPAN.2002.1004300\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings International Symposium on Parallel Architectures, Algorithms and Networks. I-SPAN'02","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPAN.2002.1004300","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 64

摘要

聚类是将模式(数据项、特征向量或观察值)分成组(聚类)的无监督分类。数据挖掘中的聚类对于发现底层数据中的分布模式非常有用。聚类算法通常采用基于距离度量的相似性度量来划分数据库,使同一分区中的数据点比不同分区中的数据点更相似。本文提出了一种新的用于大型数据库数据挖掘的数据聚类方法。仿真结果表明,本文提出的聚类方法优于快速自组织映射(FSOM)结合k-means方法(FSOM+k-means)和遗传k-means算法(GKA)。此外,在我们研究的所有情况下,我们的方法比FSOM+k-means方法和GKA方法产生的误差要小得多。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A new data clustering approach for data mining in large databases
Clustering is the unsupervised classification of patterns (data item, feature vectors, or observations) into groups (clusters). Clustering in data mining is very useful to discover distribution patterns in the underlying data. Clustering algorithms usually employ a distance metric-based similarity measure in order to partition the database such that data points in the same partition are more similar than points in different partitions. In this paper, we present a new data clustering method for data mining in large databases. Our simulation results show that the proposed novel clustering method performs better than a fast self-organizing map (FSOM) combined with the k-means approach (FSOM+k-means) and the genetic k-means algorithm (GKA). In addition, in all the cases we studied, our method produces much smaller errors than both the FSOM+k-means approach and GKA.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Data structures for one-dimensional packet classification using most-specific-rule matching Optimal multicast tree routing for cluster computing in hypercube interconnection networks An overview of data replication on the Internet Fault-tolerant routing on the star graph with safety vectors Automatic processor lower bound formulas for array computations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1