{"title":"非阻塞并发对象的实际考虑","authors":"B. Bershad","doi":"10.1109/ICDCS.1993.287700","DOIUrl":null,"url":null,"abstract":"An important class of concurrent objects are those that are nonblocking, that is, whose operations are not contained within mutually exclusive critical sections. A nonblocking object can be accessed by many threads at a time, yet update protocols based on atomic compare-and-swap operations can be used to guarantee the object's consistency. The author examines the compare-and-swap operation in the content of contemporary bus-based shared memory multiprocessors, although the results generalize to distributed shared memory multiprocessors. He describes an operating system-based solution that permits the construction of a nonblocking compare-and-swap function on architectures that only support more primitive atomic primitives such as test-and-set or atomic exchange. Several locking strategies are evaluated that can be used to synthesize a compare-and-swap operation, and it is shown that the common techniques for reducing synchronization overhead in the presence of contention are inappropriate when used as the basis for nonblocking synchronization. A simple synchronization strategy is described that has good performance because it avoids much of the synchronization overhead that normally occurs when there is contention.<<ETX>>","PeriodicalId":249060,"journal":{"name":"[1993] Proceedings. The 13th International Conference on Distributed Computing Systems","volume":"120 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1993-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"83","resultStr":"{\"title\":\"Practical considerations for non-blocking concurrent objects\",\"authors\":\"B. Bershad\",\"doi\":\"10.1109/ICDCS.1993.287700\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An important class of concurrent objects are those that are nonblocking, that is, whose operations are not contained within mutually exclusive critical sections. A nonblocking object can be accessed by many threads at a time, yet update protocols based on atomic compare-and-swap operations can be used to guarantee the object's consistency. The author examines the compare-and-swap operation in the content of contemporary bus-based shared memory multiprocessors, although the results generalize to distributed shared memory multiprocessors. He describes an operating system-based solution that permits the construction of a nonblocking compare-and-swap function on architectures that only support more primitive atomic primitives such as test-and-set or atomic exchange. Several locking strategies are evaluated that can be used to synthesize a compare-and-swap operation, and it is shown that the common techniques for reducing synchronization overhead in the presence of contention are inappropriate when used as the basis for nonblocking synchronization. A simple synchronization strategy is described that has good performance because it avoids much of the synchronization overhead that normally occurs when there is contention.<<ETX>>\",\"PeriodicalId\":249060,\"journal\":{\"name\":\"[1993] Proceedings. The 13th International Conference on Distributed Computing Systems\",\"volume\":\"120 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1993-05-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"83\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"[1993] Proceedings. The 13th International Conference on Distributed Computing Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDCS.1993.287700\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1993] Proceedings. The 13th International Conference on Distributed Computing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDCS.1993.287700","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 83

摘要

一类重要的并发对象是非阻塞的,也就是说,它们的操作不包含在互斥的临界区中。非阻塞对象可以由多个线程同时访问,但是可以使用基于原子比较和交换操作的更新协议来保证对象的一致性。作者研究了当代基于总线的共享内存多处理器的比较交换操作,尽管结果可以推广到分布式共享内存多处理器。他描述了一种基于操作系统的解决方案,该解决方案允许在只支持更基本的原子原语(如test-and-set或原子交换)的体系结构上构造非阻塞比较和交换功能。本文评估了几种可用于合成比较-交换操作的锁定策略,并且表明,在存在争用的情况下减少同步开销的常用技术在用作非阻塞同步的基础时是不合适的。本文描述了一种简单的同步策略,它具有良好的性能,因为它避免了通常在存在争用时发生的大部分同步开销。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Practical considerations for non-blocking concurrent objects
An important class of concurrent objects are those that are nonblocking, that is, whose operations are not contained within mutually exclusive critical sections. A nonblocking object can be accessed by many threads at a time, yet update protocols based on atomic compare-and-swap operations can be used to guarantee the object's consistency. The author examines the compare-and-swap operation in the content of contemporary bus-based shared memory multiprocessors, although the results generalize to distributed shared memory multiprocessors. He describes an operating system-based solution that permits the construction of a nonblocking compare-and-swap function on architectures that only support more primitive atomic primitives such as test-and-set or atomic exchange. Several locking strategies are evaluated that can be used to synthesize a compare-and-swap operation, and it is shown that the common techniques for reducing synchronization overhead in the presence of contention are inappropriate when used as the basis for nonblocking synchronization. A simple synchronization strategy is described that has good performance because it avoids much of the synchronization overhead that normally occurs when there is contention.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Uniform reliable multicast in a virtually synchronous environment Sharing complex objects in a distributed PEER environment Performance of co-scheduling on a network of workstations Evaluating caching schemes for the X.500 directory Structuring distributed shared memory with the pi architecture
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1