Hailing Zhou, Hui Kong, J. Álvarez, D. Creighton, S. Nahavandi
{"title":"航拍视频中的快速道路检测和跟踪","authors":"Hailing Zhou, Hui Kong, J. Álvarez, D. Creighton, S. Nahavandi","doi":"10.1109/IVS.2014.6856523","DOIUrl":null,"url":null,"abstract":"We propose a fast approach for detecting and tracking a specific road in aerial videos. It combines adaptive Gaussian Mixture Models (GMMs) to describe road colour distributions, and homography based tracking to track road geometries, where an efficient technique is developed to estimate homography transformations between two frames. Experiments are conducted on videos captured by our unmanned aerial vehicles. All the results demonstrate the effectiveness of our proposed method. We test 1755 frames from 5 videos. Our approach can achieve 0.032 seconds per frame and 2.64% segmentation error for images with 908 × 513 resolutions, on average.","PeriodicalId":254500,"journal":{"name":"2014 IEEE Intelligent Vehicles Symposium Proceedings","volume":"87 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Fast road detection and tracking in aerial videos\",\"authors\":\"Hailing Zhou, Hui Kong, J. Álvarez, D. Creighton, S. Nahavandi\",\"doi\":\"10.1109/IVS.2014.6856523\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a fast approach for detecting and tracking a specific road in aerial videos. It combines adaptive Gaussian Mixture Models (GMMs) to describe road colour distributions, and homography based tracking to track road geometries, where an efficient technique is developed to estimate homography transformations between two frames. Experiments are conducted on videos captured by our unmanned aerial vehicles. All the results demonstrate the effectiveness of our proposed method. We test 1755 frames from 5 videos. Our approach can achieve 0.032 seconds per frame and 2.64% segmentation error for images with 908 × 513 resolutions, on average.\",\"PeriodicalId\":254500,\"journal\":{\"name\":\"2014 IEEE Intelligent Vehicles Symposium Proceedings\",\"volume\":\"87 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE Intelligent Vehicles Symposium Proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IVS.2014.6856523\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Intelligent Vehicles Symposium Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IVS.2014.6856523","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We propose a fast approach for detecting and tracking a specific road in aerial videos. It combines adaptive Gaussian Mixture Models (GMMs) to describe road colour distributions, and homography based tracking to track road geometries, where an efficient technique is developed to estimate homography transformations between two frames. Experiments are conducted on videos captured by our unmanned aerial vehicles. All the results demonstrate the effectiveness of our proposed method. We test 1755 frames from 5 videos. Our approach can achieve 0.032 seconds per frame and 2.64% segmentation error for images with 908 × 513 resolutions, on average.