人工智能在软件工程中的应用方法

R. Feldt, F. D. O. Neto, R. Torkar
{"title":"人工智能在软件工程中的应用方法","authors":"R. Feldt, F. D. O. Neto, R. Torkar","doi":"10.1145/3194104.3194109","DOIUrl":null,"url":null,"abstract":"As Artificial Intelligence (AI) techniques become more powerful and easier to use they are increasingly deployed as key components of modern software systems. While this enables new functionality and often allows better adaptation to user needs it also creates additional problems for software engineers and exposes companies to new risks. Some work has been done to better understand the interaction between Software Engineering and AI but we lack methods to classify ways of applying AI in software systems and to analyse and understand the risks this poses. Only by doing so can we devise tools and solutions to help mitigate them. This paper presents the AI in SE Application Levels (AI-SEAL) taxonomy that categorises applications according to their point of application, the type of AI technology used and the automation level allowed. We show the usefulness of this taxonomy by classifying 15 papers from previous editions of the RAISE workshop. Results show that the taxonomy allows classification of distinct AI applications and provides insights concerning the risks associated with them. We argue that this will be important for companies in deciding how to apply AI in their software applications and to create strategies for its use.","PeriodicalId":249268,"journal":{"name":"2018 IEEE/ACM 6th International Workshop on Realizing Artificial Intelligence Synergies in Software Engineering (RAISE)","volume":"9 3","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"46","resultStr":"{\"title\":\"Ways of Applying Artificial Intelligence in Software Engineering\",\"authors\":\"R. Feldt, F. D. O. Neto, R. Torkar\",\"doi\":\"10.1145/3194104.3194109\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As Artificial Intelligence (AI) techniques become more powerful and easier to use they are increasingly deployed as key components of modern software systems. While this enables new functionality and often allows better adaptation to user needs it also creates additional problems for software engineers and exposes companies to new risks. Some work has been done to better understand the interaction between Software Engineering and AI but we lack methods to classify ways of applying AI in software systems and to analyse and understand the risks this poses. Only by doing so can we devise tools and solutions to help mitigate them. This paper presents the AI in SE Application Levels (AI-SEAL) taxonomy that categorises applications according to their point of application, the type of AI technology used and the automation level allowed. We show the usefulness of this taxonomy by classifying 15 papers from previous editions of the RAISE workshop. Results show that the taxonomy allows classification of distinct AI applications and provides insights concerning the risks associated with them. We argue that this will be important for companies in deciding how to apply AI in their software applications and to create strategies for its use.\",\"PeriodicalId\":249268,\"journal\":{\"name\":\"2018 IEEE/ACM 6th International Workshop on Realizing Artificial Intelligence Synergies in Software Engineering (RAISE)\",\"volume\":\"9 3\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-02-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"46\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE/ACM 6th International Workshop on Realizing Artificial Intelligence Synergies in Software Engineering (RAISE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3194104.3194109\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE/ACM 6th International Workshop on Realizing Artificial Intelligence Synergies in Software Engineering (RAISE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3194104.3194109","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 46

摘要

随着人工智能(AI)技术变得越来越强大和易于使用,它们越来越多地被部署为现代软件系统的关键组件。虽然这可以实现新功能,并且通常可以更好地适应用户需求,但它也给软件工程师带来了额外的问题,并使公司面临新的风险。为了更好地理解软件工程和人工智能之间的相互作用,已经做了一些工作,但我们缺乏方法来分类在软件系统中应用人工智能的方式,并分析和理解这带来的风险。只有这样,我们才能设计工具和解决方案来帮助减轻它们。本文提出了AI在SE应用级别(AI- seal)分类,该分类法根据应用点、使用的AI技术类型和允许的自动化级别对应用程序进行分类。我们通过对RAISE研讨会以前版本的15篇论文进行分类来展示这种分类法的有用性。结果表明,该分类法允许对不同的人工智能应用程序进行分类,并提供有关与之相关的风险的见解。我们认为,这对于公司决定如何在其软件应用程序中应用人工智能以及制定使用策略将非常重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Ways of Applying Artificial Intelligence in Software Engineering
As Artificial Intelligence (AI) techniques become more powerful and easier to use they are increasingly deployed as key components of modern software systems. While this enables new functionality and often allows better adaptation to user needs it also creates additional problems for software engineers and exposes companies to new risks. Some work has been done to better understand the interaction between Software Engineering and AI but we lack methods to classify ways of applying AI in software systems and to analyse and understand the risks this poses. Only by doing so can we devise tools and solutions to help mitigate them. This paper presents the AI in SE Application Levels (AI-SEAL) taxonomy that categorises applications according to their point of application, the type of AI technology used and the automation level allowed. We show the usefulness of this taxonomy by classifying 15 papers from previous editions of the RAISE workshop. Results show that the taxonomy allows classification of distinct AI applications and provides insights concerning the risks associated with them. We argue that this will be important for companies in deciding how to apply AI in their software applications and to create strategies for its use.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Semi-Automatic Generation of Active Ontologies from Web Forms for Intelligent Assistants Evaluating the Adaptive Selection of Classifiers for Cross-Project Bug Prediction A Replication Study: Just-in-Time Defect Prediction with Ensemble Learning Integrating a Dialog Component into a Framework for Spoken Language Understanding Complementing Machine Learning Classifiers via Dynamic Symbolic Execution: "Human vs. Bot Generated" Tweets
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1