基于随机模型的S&P CNX NIFTY50预测分析与预测

Himanshu Thapar, K. Shashvat
{"title":"基于随机模型的S&P CNX NIFTY50预测分析与预测","authors":"Himanshu Thapar, K. Shashvat","doi":"10.1109/ICSCCC.2018.8703331","DOIUrl":null,"url":null,"abstract":"Stock price prediction plays an important role in finance and economics which has encouraged the interest of researchers over the years to develop better predictive models. While looking at the share market structure which involves lots of risk, time series forecasting is an effective area of research. It provides with simple and faster computations for enormous amount of data. This manuscript focuses on forecasting future values for S & P CNX NIFTY 50 using its history indices (January 2008-December 2016). The statistical methods are used to forecast future values in advance. The findings after applying several models on the data and comparing the error values, the mean error of Exponential Smoothing Model (EST) is found to be having the least error values and have a better prediction rate.","PeriodicalId":148491,"journal":{"name":"2018 First International Conference on Secure Cyber Computing and Communication (ICSCCC)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predictive Analysis and Forecasting of S&P CNX NIFTY50 using Stochastic Models\",\"authors\":\"Himanshu Thapar, K. Shashvat\",\"doi\":\"10.1109/ICSCCC.2018.8703331\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Stock price prediction plays an important role in finance and economics which has encouraged the interest of researchers over the years to develop better predictive models. While looking at the share market structure which involves lots of risk, time series forecasting is an effective area of research. It provides with simple and faster computations for enormous amount of data. This manuscript focuses on forecasting future values for S & P CNX NIFTY 50 using its history indices (January 2008-December 2016). The statistical methods are used to forecast future values in advance. The findings after applying several models on the data and comparing the error values, the mean error of Exponential Smoothing Model (EST) is found to be having the least error values and have a better prediction rate.\",\"PeriodicalId\":148491,\"journal\":{\"name\":\"2018 First International Conference on Secure Cyber Computing and Communication (ICSCCC)\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 First International Conference on Secure Cyber Computing and Communication (ICSCCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSCCC.2018.8703331\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 First International Conference on Secure Cyber Computing and Communication (ICSCCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSCCC.2018.8703331","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

股票价格预测在金融和经济学中扮演着重要的角色,这激发了研究人员多年来对开发更好的预测模型的兴趣。对于涉及大量风险的股票市场结构,时间序列预测是一个有效的研究领域。它为海量数据提供了简单而快速的计算。本文着重于使用其历史指数(2008年1月至2016年12月)预测标普CNX NIFTY 50的未来价值。利用统计方法提前预测未来的价值。结果表明,指数平滑模型(Exponential Smoothing Model, EST)的平均误差值最小,预测率较好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Predictive Analysis and Forecasting of S&P CNX NIFTY50 using Stochastic Models
Stock price prediction plays an important role in finance and economics which has encouraged the interest of researchers over the years to develop better predictive models. While looking at the share market structure which involves lots of risk, time series forecasting is an effective area of research. It provides with simple and faster computations for enormous amount of data. This manuscript focuses on forecasting future values for S & P CNX NIFTY 50 using its history indices (January 2008-December 2016). The statistical methods are used to forecast future values in advance. The findings after applying several models on the data and comparing the error values, the mean error of Exponential Smoothing Model (EST) is found to be having the least error values and have a better prediction rate.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
To Alleviate The Flooding Attack and Intensify Efficiency in MANET Deep Leaming Approaches for Brain Tumor Segmentation: A Review Q-AODV: A Flood control Ad-Hoc on Demand Distance Vector Routing Protocol Sentimental Analysis On Social Feeds to Predict the Elections A Comparative study of various Video Tampering detection methods
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1